2011年中考数学总复习资料
代数部分
第一章:实数
基础知识点: 一、实数的分类:
p的形式,其中p、q是互质的整数,这是有理数q1、有理数:任何一个有理数总可以写成的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34……;特定意义的数,如π、sin45°等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念
1、相反数:只有符号不同的两个数叫做互为相反数。 (1)实数a的相反数是 -a; (2)a和b互为相反数?a+b=0 2、倒数:
1;(2)a和b 互为倒数?ab?1;(3)注意0没有倒数 a(1)实数a(a≠0)的倒数是
3、绝对值:
(1)一个数a 的绝对值有以下三种情况:
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个
数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n次方根
(1)平方根,算术平方根:设a≥0,称?a叫a的平方根,a叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。 三、实数与数轴
1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。 四、实数大小的比较
1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。 五、实数的运算
1、加法:
(1)同号两数相加,取原来的符号,并把它们的绝对值相加;
(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。 2、减法:
减去一个数等于加上这个数的相反数。 3、乘法:
(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。 (3)乘法可使用乘法交换律、乘法结合律、乘法分配律。 4、除法:
(1)两数相除,同号得正,异号得负,并把绝对值相除。 (2)除以一个数等于乘以这个数的倒数。 (3)0除以任何数都等于0,0不能做被除数。 5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算