附合导线平差内业计算
一、主要公式(左角):
如图:
有: αB1=αAB+βB±180°
α12=αB1+β1±180° α23=α12+β2±180° α3C=α23+β3±180°
αCD=α3C+βC±180°
计算终边坐标方位角的一般公式为:
α
′终边=′
α始边+Σ
β测±n×180° =±10
角度闭合差:β测=
级导线技术要求),式中
如果如果
?
α终边-α终边 ,?β
允
n(一
n为导线观测角个数。
?β>?β
测
允
,则说明测角误差超限,应停止计算,重新检测角度。
?β>?β
测
允
,说明测角精度符合要求,此时需要进行角度闭合差的调整。
调整是应注意:当用左角计算
α终边?β
′
时,改正数的符号与
?β
测符号相反;当用右角计算
α终边
′
时,改正数的符号与
可将闭合差按相反符号平均分配给各观测角,测符号相同。
而得出改正角:
V改=-?β
测
/n
式中n内角的个数,计算的改正数,取位至秒。根据公式
β=β
推算。
测
+V
改 得出改正后的观测角,继而算出新的方位角。为了检核,
最后应重新推算结束边的坐标方位角,它应与已知数值相等。否则,应重新
坐标增量闭合差:
ΔXAB=DAB×COS(αAB),ΔYAB=DAB×SIN(αAB) ΔXB1=DB1×COS(αB1),ΔYB1=DB1×SIN(αB1) ΔX12=D12×COS(α12),ΔY12=D12×SIN(α12) ΔX23=D23×COS(α23),ΔY23=D23×SIN(α23) ΔX3C=D3C×COS(α3C),ΔY3C=D3C×SIN(α3C)
按附合导线的要求,各边坐标增量代数和的理论值
ΣΔXi、ΣΔYi,
应等于终、起两点的已知坐标值之差。因此,纵、横坐标增量闭合差可按下式计算:
?x=ΣΔXi-(X终-X始),?Y=ΣΔYi-(Y终-Y始)
导线全长闭合差:
f?f?f2x2y
导线全长相对闭合差:
f1
K???D?Df1(一级导线技术要求) ?允?15000若
K<K允,则说明符合精度要求,可以进行调整。即将?x、?Y反符号,按边长
成正比分配到相应边的纵、横坐标增量中去,从而得到改正后的纵、横坐标增量。
坐标增量分配:
D测?Xi?-fX??D
D测?Yi?-fY??D改正后坐标增量:
?X改??Xi??xi
?Y改??Yi??Yi
计算各导线点的坐标:
根据后一点的坐标及改正后的坐标增量,按下式即可推算出前一点的坐标。
X前=X后+ΔX改 Y前=Y后+ΔY改
最后,还应推算出终止边上C点的坐标,其值应与原有值相等,以作检核。
相关技术要求:
附 合 导 线 计 算 表
观测左角 改正数 方位角 平距点 号 ( °′ ″ ) ( ″) ( °′ ″ ) (m) A B 1 2 3 C D
坐标增量(m) △X △Y 改正数(mm) 改正后坐标增量(m) X Y 2 1 4 3 △X △Y 平差后坐标(m) X Y 215°25′59″ 127°33′50″ 155°06′06″ 145°56′59″ 164°08′16″ -1 -1 -1 -1 -1 125°28′04.45″ 3351784.923 488817.630 3351088.688 489794.873 -755.11160°54′02.42″ 799.11 261.473 -8 8 108°27′51.39″ 485.96 -153.91 460.944 -5 1778.6983°33′56.35″ 1789.97 200.592 5 -17 -755.126 261.475 3350333.562 490056.348 -153.915 460.945 3350179.647 490517.293 200.575 1778.699 3350380.222 492295.992 609.41 713.92 3350989.632 493009.912 3352040.476 493709.482 49°30′54.32″ 938.65 609.418 713.917 -8 33°39′09.29″ fx=0.038 fβ=Σfβ测-Σfβ理 fβ=5″ fβ允 = ±10√n = ±22″ fβ