逻辑推理
【知识、方法梳理】
逻辑推理题不涉及数据,也没有几何图形,只涉及一些相互关联的条件。它依据逻辑汇率,从一定的前提出发,通过一系列的推理来获取某种结论。
解决这类问题常用的方法有:直接法、假设法、排除法、图解法和列表法等。
逻辑推理问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,进行合情合理的推理,最后作出正确的判断。
推理的过程中往往需要交替运用“排除法”和“反正法”。要善于借助表格,把已知条件和推出的中间结论及时填入表格内。填表时,对正确的(或不正确的)结果要及时注上“√”(或“×”),也可以分别用“1”或“0”代替,以免引起遗忘或混乱,从而影响推理的速度。
推理的过程,必须要有充足的理由或重复内的根据,并常常伴随着论证、推理,论证的才能不是天生的,而是在不断的实践活动中逐渐锻炼、培养出来的。
解数学题,从已知条件到未知的结果需要推理,也需要计算,通常是计算与推理交替进行,而且这种推理不仅是单纯的逻辑推理,而是综合运用了数学知识和专门的生活常识相结合来运用。这种综合推理的问题形式多样、妙趣横生,也是小学数学竞赛中比较流行的题型。
解答综合推理问题,要恰当地选择一个或几个条件作为突破口。统称从已知条件出发可以推出两个或两个以上结论,而又一时难以肯定或否定其中任何一个时,这就要善于运用排除法、反证法逐一试验。
当感到题中条件不够时,要注意生活常识、数的性质、数量关系和数学规律等方面寻找隐蔽条件。
【典例精讲】
例题1:
星期一早晨,王老师走进教室,发现教室里的坏桌凳都修好了。传达室人员告诉他:这是班里四个住校学生中的一个做的好事。于是,王老师把许兵、李平、刘成、张明这四个住校学生找来了解。
(1)许兵说:桌凳不是我修的。 (2)李平说:桌凳是张明修的。 (3)刘成说:桌凳是李平修的。 (4)张明说:我没有修过桌凳。
后经了解,四人中只有一个人说的是真话。请问:桌凳是谁修的?
根据“两个互相否定的思想不能同真”可知:(2)、(4)不能同真,必有一假。 假设(2)说真话,则(4)为假话,即张明修过桌凳。
又根据题目条件了:只有1人说的是真话:可退知:(1)和(3)都是假话。由(1)说的可退出:桌凳是许兵修的。这样,许兵和张明都修过桌凳,这与题中“四个人中只有一个人说的是真话”相矛盾。
因此,开头假设不成立,所以,(2)李平说的为假话。由此可退知(4)张明说了真话,则许兵、刘成说了假话。所以桌凳是许兵修的。 练习1:
1、小华、小红、小明三人中,有一人在数学竞赛中得了奖。老师问他们谁是获奖者,小华说是小红,小红说不是我,小明也说不是我。如果他们当中只有一人说了真话。那么,谁是获奖者?
2、一位警察,抓获4个盗窃嫌疑犯A、B、C、D,他们的供词如下: A说:“不是我偷的”。 B说:“是A偷的”。 C说:“不是我”。 D说:“是B偷的”。
他们4人中只有一人说的是真话。你知道谁是小偷吗?
3、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个说真话。说真话的有多少人?说假话的有多少人?
例题2:
虹桥小学举行科技知识竞赛,同学们对一贯刻苦学习、爱好读书的四名学生的成绩作了如下估计:
(1)丙得第一,乙得第二。 (2)丙得第二,丁得第三。 (3)甲得第二,丁得死四。
比赛结果一公布,果然是这四名学生获得前4名。但以上三种估计,每一种只对了一半错了一半。请问他们各得第几名?
同学们的预测里有真有假。但是最后公布的结果中,他们都只预测对了一半。我们可以用假设法假设某人前半句对后半句错,如果不成立,再从相反方向思考推理。
假设(1)中“丙得第一”说错了,则(1)中“乙得第二”说对了;(1)中“乙得第二”说对了,则(2)中“丙得第二”说错了;(2)中“丙得第二”说错了,“丁得第三”说对了;(2)中“丁得第三”说对了,(3)中“丁得第四”说错了;(3)中“丁得第四”说错了,则(3)中“甲得第二”说对了,这与最初的假设相矛盾。
所以,正确答案是:丙得死一,丁得第三,甲得第二,乙得第四。 练习2:
1、甲、乙、丙、丁同时参加一次数学竞赛。赛后,他们四人预测名词的谈话如下: 甲:“丙得第一,我第三”。 乙:“我第一,丁第四”。 丙:“丁第二,我第三”。 丁:没有说话。
最后公布结果时,发现甲、乙丙三人的预测都只对了一半。请你说出这次竞赛中甲、乙、丙、丁四人的名次。
2、某小学最近举行一次田径运动会,人们对一贯刻苦锻炼的5名学生的短跑成绩作了如下的估计:
A说:“第二名是D,第三名是B”。 B说:“第二名是C,第四名是E”。 C说:“第一名是E,第五名是A”。 D说:“第三名是C,第四名是A”。 E说:“第二名是B,第五名是D”。
这5位同学每人说对了一半,请你猜一猜5位同学的名次。
3、某次考试考完后,A,B,C,D四个同学猜测他们的考试成绩。 A说:“我肯定考得最好”。 B说:“我不会是最差的”。
C说:“我没有A考得好,但也不是最差的”。 D说:“可能我考得最差”。
成绩一公布,只有一个人说错了,请你按照考试分数由高到低排出他们的顺序。
例题3:
张、王、李三个工人,在甲、乙丙三个工厂里分别当车工、钳工和电工。
①张不在甲厂,②王不在乙厂,③在甲厂的不是钳工,④在乙厂的是车工,⑤王不是电工。 这三个人分别在哪个工厂?干什么工作?
这题可用直接法解答。即直接从特殊条件出发,再结合其他条件往下推,直到推出结论为止。 通过⑤可知王不是电工,那么王必是车工或钳工;又通过②可知王不在乙厂,那么,王必在甲厂或丙厂;又由④知道在乙厂的是车工,所以王只能是钳工;又因为甲厂的不是钳工,则晚必是丙厂的钳工;张不在甲厂,必在乙厂或丙厂;王在丙厂,则张必在乙厂,是乙厂的车工,所以张是乙厂的车工。剩下的李是甲厂的电工。 练习3:
1、某大学宿舍里A,B,C,D,E,F,G七位同学,其中两位来自哈尔滨,两位来自天津,两位来自广州,还知道:
(1)D,E来自同一地方;
(2)B,G,F不是北方人; (3)C没去过哈尔滨。 那么,A来自什么地方?
2、每个星期的七天中,甲在星期一、、二、三讲假话,其余四天都讲真话:乙在星期四、五、六讲假话,其余各天都讲真话。
今天甲说:“昨天是我说谎的日子。”乙说:“昨天也是我说谎的日子。”今天是星期几?
3、王涛、李明、江民三人在一起谈话。他们当中一位是校长,一位是老师,一位是学生家长。现在只知道:
(1)江民比家长年龄大。 (2)王涛和老师不同岁。 (3)老师比李明年龄小。
你能确定谁是校长、谁是老师,谁是家长吗?
例题4:
六年级有四个班,每个班都有正、副班长各一人。平时召开年级班长会议时,各班都只有一人参加。参加第一次回师的是小马、小张、小刘、小林;参加第二次会议的是小刘、小朱、小马、小宋;参加第三次会议的是小宋、小陈、小马、小张,小徐因有病,三次都没有参加。你知道他们哪两个是同班的吗?
将条件列在一张表格内,借助于表格进行分析、推理、根据题意,可列表如下: 小张 小马 小刘 小林 小朱 小宋 小陈 小徐 一 √ √ √ √ 二 √ √ √ √ 三 √ √ √ √ 由上表可知,小马三次参加会议,而小徐三次都没参加,他们是同一班级的。小张和小朱是同班的,小刘和小陈是同班的,小林和小宋是同班的。 练习4:
1、某市举行家庭普法学习竞赛,有5个家庭进入决赛(每家2名成员)。决赛时进行四项比赛,每项比赛各家出一名成员参赛,第一项参赛的是吴、孙、赵、李、王;第二项参赛的是郑、孙、吴、李、周;第三项参赛的是赵、张、吴、钱、郑;第四项参赛的是周、吴、孙、张、王。另外,刘某因故四次均未参赛。谁和谁是同一家庭呢?
2、刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛。事先规定:兄、妹不许搭伴。
第一局:刘刚和小丽对李强和小英;
第二局:李强和小红对刘刚和马辉的妹妹。 那么,三个男孩的妹妹分别是谁?
3、有三只小袋,一只小袋有两粒红珠,另一只小袋有两粒蓝珠,第三只小袋装有一粒蓝珠和一粒红珠。小兰不慎把小袋外面的三只标签都贴错了。请问从哪只小袋中摸出一粒珠,就可以知道三只小袋中各装有什么颜色的珠?
例题5:
小华和甲、乙、丙、丁四个同学参加象棋比赛。每两人要比赛一盘。到现在为止,小华已经比赛了4盘。甲赛了3盘,乙赛了2盘,丁赛了1盘。丙赛了几盘?
这道题可以利用画图的方法进行推理,如图32-1所示,用5个点分别表示小华、甲、乙、丙、丁。如果两人之间已经进行了比赛,就在表示两人的点之间连一条线。现在小华赛4盘,所以小华应与其余4个点都连线……
甲赛了3盘。由于丁只赛了一盘,所以甲与丁之间没有比赛。那么,就连接甲、乙和甲、丙。这时,乙已有了两条线,与题中乙赛2盘相结合,就不再连了。所以,从图32-1中可以看出,丙与小华、甲各赛一盘。即丙赛了两盘。 练习5:
1、A,B,C,D,E五位同学一起比赛象棋,每两人都要比赛一盘。到现在为止,A已经比赛了4盘。B赛了3盘,C赛了2盘,D赛了1盘。E赛了几盘?
2、A先生和A太太以及三对夫妻举行了一次家庭晚会。规定每两人最多握手一次,但不和自己的妻子握手。握手完毕后,A先生问了每个人(包括他妻子)握手几次?令他惊讶的是每人答复的数字各不相同。那么,A太太握了几次手?
3、五位同学一起打乒乓球,两人之间最多只能打一盘。打完后,甲说:“我打了四盘”。乙说:“我打了一盘”。丙说:“我打了三盘”。丁说:“我打了四盘”。戊说:“我打了三盘”。
你能肯定其中有人说错了吗?为什么?
例题6:
图32-2是同一个标有1,2,3,4,5,6的小正方体的三种不同的摆法。图中正方体三个朝左的一面的数字之积是多少?
用排除法排除不符合条件的情形,最后剩下的情况就是所要的结果。
由(1)、(2)两个图可以看出,1的对面不可能为4,6,2,3,所以1的对面必为5;由(2)、(3)两个图形可以看出,3的对面不可能为1,2,4,5,所以3的对面必为6。由此可知,4的对面必定为2。上面正方体三个朝左一面的数字依次为2,5,6。所以它们的积为2×5×6=60。 练习6:
1、图32-3是同一个标有1,2,3,4,5,6的小正方体的三种不同的摆法。图中正方体三个朝左的一面的数字之和是多少?
2、将红、黄、蓝、白、黑、绿六种颜色分别涂在正方体各面上(每一面只涂一种颜色)。现有涂色方式完全一样的相同的四块小正方体,把它们拼成长方体(如图32-4所示),每个小正房体红色面的对面涂的是什么颜色?黄色对面的?黑色对面呢?