好文档 - 专业文书写作范文服务资料分享网站

芸苔素内酯调控植物生长发育及抗逆性的研究进展

天下 分享 时间: 加入收藏 我要投稿 点赞

周扬锟 等

人[84]的研究则发现了BR的应用使得油菜子叶镉的积累降低了14%。Hayat等人[85]报道了BR的应用改善了镉胁迫下芸苔属植物的碳酸酐酶活性,叶绿素含量,净光合速率以及渗透调节。 3.4.2. 铜胁迫

高浓度的铜诱导通过哈伯–韦斯反应和芬顿反应产生大量自由基,从而造成氧化应激[86],从而导致一系列氧化损伤。Fariduddin等人[87]报道了BR显著改善了铜胁迫下芸苔属植物的形态,增加了生物量的积累。Fariduddin等人[88]的另一项研究则发现黄瓜在盐胁迫和铜胁迫共同作用下,生物量的积累、叶绿素含量、碳酸酐酶活性、净光合速率以及PSII初级光化学的最大量子产量均显著下降,而在应用了BR后这些指标得到改善,除此以外植物多种抗氧化酶活性和脯氨酸含量同时上升,增强了植物的抗逆性。 3.4.3. 铝胁迫

Pereira等人[89]的实验发现了铝对植物生长,以及一些特定的酶,如δ-氨基乙酰丙酸脱水酶(ALA-D)活性的抑制作用。除此之外,铝还会干扰根尖和侧根的细胞分裂、降低根系呼吸和酶活性、干扰植物营养平衡、且能通过增强DNA双链的刚性来抑制DNA复制[90]。Ali等[91]的研究表明BR的应用降低了铝胁迫对绿豆幼苗的毒性,改善了幼苗生长、光合以及其它生理过程。Madhan等人[92]的研究发现BR的应用促进了铝胁迫下木豆种子的萌发和幼苗的生长。幼苗体内过氧化氢酶、过氧化物酶、超氧化物歧化酶和抗坏血酸过氧化物酶等抗氧化酶的活性也随着BR的应用而提高,脯氨酸等渗透调节物质水平也同时提高,维持了幼苗渗透平衡。 3.4.4. 镍胁迫

过量的镍对植物的光合作用、蒸散作用等生理过程以及抗氧化酶活性以及渗透调节物质水平产生影响,还会产生活性氧并造成脂质过氧化[93] [94]。Kanwar等人[95]报道了外源BR抑制了芥菜根茎对镍的吸收,恢复了受镍胁迫的芥菜生长。他们的研究结果还表明外源BR可提高植物体内的SOD、CAT、POD、APOX等氧化酶活性,改善植物形态和生理过程。Soares等人[96]则报道BR降低了镍在植物根中的积累,并且改善了渗透调节物质水平,提高了植物光合色素含量以及Rubisco活性。 3.4.5. 铬胁迫

Parr和Fred [97]的研究表明镉离子抑制了矮菜豆的萌芽。与其它重金属一样,镉毒性也会产生大量的自由基和活性氧,从而抑制植物生长[98]。Anket等人[99]研究发现,BR的应用显著减少了水稻中铬的积累,改善了水稻的生长发育。Arora等人[100]发现BR调节了抗氧化剂和蛋白质的生物合成,从而减轻铬胁迫。 3.4.6. 锌胁迫

锌浓度过高会导致光合色素分解,使叶片黄化,抑制根生长和发生,同时产生活性氧造成氧化损伤并打破营养平衡,抑制植物生长[101] [102]。Ramakrishna和Rao [103]报道了应用BR可以提高锌胁迫下萝卜幼苗的抗氧化酶活性,从而减轻活性氧对植物的损伤,同时幼苗体内的脯氨酸水平上升,幼苗抗逆性得到提高。它们的研究还指出应用了BR后MAD含量下降,脂氧合酶活性和电解液泄漏得到改善。

4. 总结与展望

BR作为一种活性的信号化合物在不同的代谢和生理过程中,改善植物胁迫下的生长发育,在植物生长和抗逆性方面有重要的作用。BR通过激活多种抗氧化酶,提高抗氧化物含量来减少活性氧对植物的损伤。不仅如此,BR也能保护光合色素的超微结构不被降解,从而增加光合作用和其他叶片的气交换。应用BR还可以增加各类渗透调节物质的积累,特别是脯氨酸,以调节胁迫下植物的渗透势。在不同的应

DOI: 10.12677/hjas.2020.106061

412

农业科学

周扬锟 等

用方法中,通过种子处理和叶面喷雾应用BR比根应用更方便有效。此外,也有研究认为BR具有低浓度促进生长,高浓度抑制生长的双重性。BR对于不同基因表达水平上具有调节作用,但是相关研究较少,还有研究表明外源芸苔素内酯影响植物体内多种激素水平,表明芸苔素内酯与其它植物激素间存在相互作用关系,但其机制尚不明确,也还需要深入研究。

基金项目

浙江省重点研发计划项目“药食同源植物黄精品质提升关键技术研究及功能食品开发”(2020C02039)。

参考文献

[1] Clouse, S.D. (1996) Molecular Genetic Studies Confirm the Role of Brassinosteroids in Plant Growth and Develop-ment. The Plant Journal, 10, 1-8. https://doi.org/10.1046/j.1365-313X.1996.10010001.x [2] Mulqueen, P. (2003) Recent Advances in Agrochemical Formulation. Advances in Colloid & Interface Science, 106,

83-107. https://doi.org/10.1016/S0001-8686(03)00106-4 [3] Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N. and Cook, J.L.C. (1979) Brassinolide, a Plant

Growth-Promoting Steroid Isolated from Brassica napus Pollen. Nature, 281, 216-217. https://doi.org/10.1038/281216a0 [4] Yang, C.J., Zhang, C., Lu, Y.N., Jin, J.Q. and Wang, X.L. (2011) The Mechanisms of Brassinosteroids’ Action: From

Signal Transduction to Plant Development. Molecular Plant, 4, 588-600. https://doi.org/10.1093/mp/ssr020 [5] Clouse, S.D. (2011) Brassinosteroid Signal Transduction: From Receptor Kinase Activation to Transcriptional Net-works Regulating Plant Development. Plant Cell, 23, 1219-1230. https://doi.org/10.1105/tpc.111.084475 [6] Chen, Z., Wang, Z., Yang, Y., Li, M. and Xu, B. (2018) Abscisic Acid and Brassinolide Combined Application Syner-gistically Enhances Drought Tolerance and Photosynthesis of Tall Fescue under Water Stress. Scientia Horticulturae, 228, 1-9. https://doi.org/10.1016/j.scienta.2017.10.004 [7] Ahanger, M.A., Ashraf, M., Bajguz, A. and Ahmad, P. (2018) Brassinosteroids Regulate Growth in Plants under

Stressful Environments and Crosstalk with Other Potential Phytohormones. Journal of Plant Growth Regulation, 37, 1007-1024. https://doi.org/10.1007/s00344-018-9855-2 [8] Fariduddin, Q., Yusuf, M., Ahmad, I. and Ahmad, A. (2014) Brassinosteroids and Their Role in Response of Plants to

Abiotic Stresses. Biologia Plantarum, 58, 9-17. https://doi.org/10.1007/s10535-013-0374-5 [9] Vriet, C., Russinova, E. and Reuzeau, C. (2012) Boosting Crop Yields with Plant Steroids. The Plant Cell, 24, 842-857.

https://doi.org/10.1105/tpc.111.094912 [10] Wang, L., Xu, Y.Y., Li, J., Powell, R.A., Xu, Z.H. and Chong, K. (2007) Transgenic Rice Plants Ectopically Express-ing Atbak1 Are Semi-Dwarfed and Hypersensitive to 24-Epibrassinolide. Journal of Plant Physiology, 164, 655-664. https://doi.org/10.1016/j.jplph.2006.08.006 [11] Meudt, W.J., Thompson, M.J. and Bennett, H.W. (1983) Investigations on the Mechanism of the Brassinosteroid Re-sponse. III. Techniques for Potential Enhancement of Crop Production [Barley, Bean]. Meeting Plant Growth Regula-tor Society of America, 10, 312-318. [12] Zhiponova, M.K., Vanhoutte, I., Boudolf, V., Betti, C., Dhondt, S., Coppens, F., et al. (2013) Brassinosteroid Produc-tion and Signaling Differentially Control Cell Division and Expansion in the Leaf. New Phytologist, 197, 490-502. https://doi.org/10.1111/nph.12036 [13] Kartal, G., Temel, A., Arican, E. and Gozukirmizi, N. (2009) Effects of Brassinosteroids on Barley Root Growth, An-tioxidant System and Cell Division. Plant Growth Regulation, 58, 261-267. https://doi.org/10.1007/s10725-009-9374-z [14] Hu, Y., Bao, F. and Li, J. (2010) Promotive Effect of Brassinosteroids on Cell Division Involves a Distinct

cycd3-Induction Pathway in Arabidopsis. Plant Journal for Cell & Molecular Biology, 24, 693-701. https://doi.org/10.1046/j.1365-313x.2000.00915.x [15] Khripach, V., Zhabinskii, V. and Groot, A.D. (2000) Twenty Years of Brassinosteroids: Steroidal Plant Hormones

Warrant Better Crops for the XXI Century. Annals of Botany (London), 86, 441-447. https://doi.org/10.1006/anbo.2000.1227 [16] Xi, Z.M., Zhang, Z.W., Hou, S.S., Luan, L.Y., Gao, X., Ma, L.N. and Fang, Y.L. (2013) Regulating the Secondary

Metabolism in Grape Berry Using Exogenous 24-Epibrassinolide for Enhanced Phenolics Content and Antioxidant Capacity. Food Chemistry, 141, 3056-3065. https://doi.org/10.1016/j.foodchem.2013.05.137

DOI: 10.12677/hjas.2020.106061

413

农业科学

周扬锟 等

[17] Sayed, H.F., Ibrahim, H.K., El-Shafey, A.S. and Hassan, H.M. (2009) Effects of Pre-Soaking Cucurbita pepo L. (C.

pepo) Seeds in Two Different Concentrations of Epibrassinolide (eb) on Seed Germination and Seedling Growth. Aus-tralian Journal of Basic and Applied Sciences, 3, 4465-4477. [18] Ekinci, M., Yildirim, E., Dursun, A. and Turan, M. (2012) Mitigation of Salt Stress in Lettuce (Lactuca sativa L. var.

crispa) by Seed and Foliar 24-Epibrassinolide Treatments. HortScience: A Publication of the American Society for Horticultural Science, 47, 631-636. https://doi.org/10.21273/HORTSCI.47.5.631 [19] Nogues, S. and Baker, N.R. (2000) Effects of Drought on Photosynthesis in Mediterranean Plants Grown under En-hanced uv-b Radiation. Journal of Experimental Botany, 51, 1309-1317. https://doi.org/10.1093/jexbot/51.348.1309 [20] Lefebvre, S., Lawson, T., Fryer, M., Zakhleniuk, O.V., Lloyd, J.C. and Raines, C.A. (2005) Increased Sedoheptulose-1,

7-Bisphosphatase Activity in Transgenic Tobacco Plants Stimulates Photosynthesis and Growth from an Early Stage in Development. Plant Physiology, 138, 451-460. https://doi.org/10.1104/pp.104.055046 [21] Reddy, M.P. and Vora, A.B. (1986) Changes in Pigment Composition, Hill Reaction Activity and Saccharides Meta-bolism in Bajra (Pennisetum typhoides S & H) Leaves under Nacl Salinity. Photosynthetica, 20, 50-55. [22] Gupta, P., Srivastava, S. and Seth, C.S. (2017) 24-Epibrassinolide and Sodium Nitroprusside Alleviate the Salinity

Stress Inbrassica juncea L. cv. Varuna through Cross Talk among Proline, Nitrogen Metabolism and Abscisic Acid. Plant and Soil, 411, 483-498. https://doi.org/10.1007/s11104-016-3043-6 [23] Rodriguez, P., Torrecillas, A., Morales, M.A., Ortuno, M.F. and Sanchez-Blanco, M.J. (2005) Effects of Nacl Salinity

and Water Stress on Growth and Leaf Water Relations of Asteriscus maritimus Plants. Environmental & Experimental Botany, 53, 113-123. https://doi.org/10.1016/j.envexpbot.2004.03.005 [24] Tanveer, M. and Shabala, S. (2018) Targeting Redox Regulatory Mechanisms for Salinity Stress Tolerance in Crops.

Salinity Responses and Tolerance in Plants, 1, 213-234. https://doi.org/10.1007/978-3-319-75671-4_8 [25] Verma, S. and Mishra, S.N. (2005) Putrescine Alleviation of Growth in Salt Stressed Brassica juncea by Inducing An-tioxidative Defense System. Journal of Plant Physiology, 162, 669-677. https://doi.org/10.1016/j.jplph.2004.08.008 [26] Mittler, R. (2002) Oxidative Stress, Antioxidants and Stress Tolerance. Trends in Plant Science, 7, 405-410.

https://doi.org/10.1016/S1360-1385(02)02312-9 [27] Anwar, A., Bai, L., Miao, L., Liu, Y., Li, S., Yu, X., et al. (2018) 24-Epibrassinolide Ameliorates Endogenous Hor-mone Levels to Enhance Low-Temperature Stress Tolerance in Cucumber Seedlings. International Journal of Mole-cular Sciences, 19, 2497. https://doi.org/10.3390/ijms19092497 [28] Tanveer, M., Shahzad, B., Sharma, A. and Khan, E.A. (2019) 24-Epibrassinolide Application in Plants: An Implication

for Improving Drought Stress Tolerance in Plants. Plant Physiology, and Biochemistry: PPB, 135, 295-303. https://doi.org/10.1016/j.plaphy.2018.12.013 [29] Qasim, M., Ashraf, M., Ashraf, M.Y., Rehman, S.U. and Rha, E.S. (2003) Salt-Induced Changes in Two Canola Culti-vars Differing in Salt Tolerance. Biologia Plantarum (Prague), 46, 629-632. https://doi.org/10.1023/A:1024844402000 [30] Anjum, S.A., Tanveer, M., Hussain, S., Ashraf, U., Khan, I. and Wang, L. (2017) Alteration in Growth, Leaf Gas Ex-change, and Photosynthetic Pigments of Maize Plants under Combined Cadmium and Arsenic Stress. Water, Air, & Soil Pollution, 228, 13. https://doi.org/10.1007/s11270-016-3187-2 [31] Siddiqui, M.H., Mohamed, H., Al-Whaibi, F.M. and Sahli, A.A.A. (2014) Nano-Silicon Dioxide Mitigates the Adverse

Effects of Salt Stress on Cucurbita pepo L. Environmental Toxicology and Chemistry, 33, 2429-2437. https://doi.org/10.1002/etc.2697 [32] Wu, W., Zhang, Q., Ervin, E.H., Yang, Z. and Zhang, X. (2017) Physiological Mechanism of Enhancing Salt Stress

Tolerance of Perennial Ryegrass by 24-Epibrassinolide. Frontiers in Plant Science, 8, 1017. https://doi.org/10.3389/fpls.2017.01017 [33] Krishna, P. (2003) Brassinosteroid-Mediated Stress Responses. Journal of Plant Growth Regulation, 22, 289-297.

https://doi.org/10.1007/s00344-003-0058-z [34] Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S.A., Sharma, A., et al. (2018) Role of 24-Epibrassinolide

(ebl) in Mediating Heavy Metal and Pesticide Induced Oxidative Stress in Plants: A Review. Ecotoxicology and Envi-ronmental Safety, 147, 935-944. https://doi.org/10.1016/j.ecoenv.2017.09.066 [35] Talaat, N.B., Shawky, B.T. and Ibrahim, A.S. (2015) Alleviation of Drought-Induced Oxidative Stress in Maize (Zea

mays L.) Plants by Dual Application of 24-Epibrassinolide and Spermine. Environmental and Experimental Botany, 113, 47-58. https://doi.org/10.1016/j.envexpbot.2015.01.006 [36] Anjum, S.A., Wang, L.C., Farooq, M., Hussain, M. and Zou, C.M. (2011) Brassinolide Application Improves the

Drought Tolerance in Maize through Modulation of Enzymatic Antioxidants and Leaf Gas Exchange. Journal of Agronomy and Crop Science, 197, 177-185. https://doi.org/10.1111/j.1439-037X.2010.00459.x [37] Xiong, J., Kong, H., Akram, N., Bai, X., Ashraf, M., Tan, R., et al. (2016) 24-Epibrassinolide Increases Growth, Grain

DOI: 10.12677/hjas.2020.106061

414

农业科学

周扬锟 等

Yield and Beta-ODAP Production in Seeds of Well-Watered and Moderately Waterstressed Grass Pea. Plant Growth Regulation, 78, 217-231. https://doi.org/10.1007/s10725-015-0087-1

[38] Hu, W.H., Yan, X.H., Xiao, Y.A., Zeng, J.J., Qi, H.J. and Ogweno, J.O. (2013) 24-Epibrassinosteroid Alleviate

Drought-Induced Inhibition of Photosynthesis in Capsicum annuum. Scientia Horticulturae, 150, 232-237. https://doi.org/10.1016/j.scienta.2012.11.012 [39] Lima, J.V. and Lobato, A.K.S. (2017) Brassinosteroids Improve Photosystem II Efficiency, Gas Exchange, Antioxidant

Enzymes and Growth of Cowpea Plants Exposed to Water Deficit. Physiology and Molecular Biology of Plants, 23, 59-72. https://doi.org/10.1007/s12298-016-0410-y [40] Zhao, G.W., Xu, H.L., Zhang, P.J., et al. (2017) Effects of 2,4-Epibrassinolide on Photosynthesis and Rubisco Activase

Gene Expression in Triticum aestivum L. Seedlings under a Combination of Drought and Heat Stress. Plant Growth Regulation, 81, 377-384. https://doi.org/10.1007/s10725-016-0214-7 [41] 孙石昂, 何发林, 姚向峰, 乔治华, 于灏泳, 李向东, 等. 芸苔素内酯可提高玉米幼苗的抗旱性[J]. 植物生理学

报, 2019(6): 829-836. [42] Sharma, A., Thakur, S., Kumar, V., Kesavan, A.K., Thukral, A.K. and Bhardwaj, R. (2017) 24-Epibrassinolide Stimu-lates Imidacloprid Detoxification by Modulating the Gene Expression of Brassica juncea L. BMC Plant Biology, 17, 56. https://doi.org/10.1186/s12870-017-1003-9 [43] Peng, Y., Zhang, J., Cao, G., Xie, Y., Liu, X., Lu, M., et al. (2010) Overexpression of PLDα1 Gene from Setaria itali-ca Enhances the Sensitivity of Arabidopsis to Abscisic Acid and Improves Its Drought Tolerance. Plant Cell Reports, 29, 793-802. https://doi.org/10.1007/s00299-010-0865-1 [44] Pokotylo, I.V., Kretynin, S.V., Khripach, V.A., Ruelland, E., Blume, Y.B. and Kravets, V.S. (2014) Influence of

24-Epibrassinolide on Lipid Signalling and Metabolism in Brassica napus. Plant Growth Regulation, 73, 9-17. https://doi.org/10.1007/s10725-013-9863-y [45] Farooq, M., Wahid, A., Basra, S.M.A. and Islam-ud-Din (2009) Improving Water Relations and Gas Exchange with

Brassinosteroids in Rice under Drought Stress. Journal of Agronomy and Crop Science, 195, 262-269. https://doi.org/10.1111/j.1439-037X.2009.00368.x [46] Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F. and Nogues, S. (2004) A Role for Brassinosteroids

in the Regulation of Photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55, 1135-1143. https://doi.org/10.1093/jxb/erh124 [47] Khamsuk, O., Sonjaroon, W., Suwanwong, S., et al. (2018) Effects of 24-Epibrassinolide and the Synthetic Brassinos-teroid Mimic on Chili Pepper under Drought. Acta Physiologiae Plantarum, 40, 106. https://doi.org/10.1007/s11738-018-2682-z [48] Alejandro, C.-U., et al. (2016) Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide

in Response to Chilling. Frontiers in Plant Science, 7, 1281. https://doi.org/10.3389/fpls.2016.01281 [49] Honnerova, J., Rothova, O., Hola, D., Kocova, M., Kohout, L. and Kvasnica, M. (2010) The Exogenous Application of

Brassinosteroids to Zea mays (L.) Stressed by Long-Term Chilling Does Not Affect the Activities of Photosystem 1 or 2. Journal of Plant Growth Regulation, 29, 500-505. https://doi.org/10.1007/s00344-010-9153-0 [50] Kalinich, J.F., Bhushan, M.N. and Todhunter, J.A. (1985) Relationship of Nucleic Acid Metabolism to Brassino-lide-Induced Responses in Beans. Journal of Plant Physiology, 120, 207-214. https://doi.org/10.1016/S0176-1617(85)80107-3 [51] Yuan, L., Shu, S., Sun, J., et al. (2012) Effects of 24-Epibrassinolide on the Photosynthetic Characteristics, Antioxidant

System, and Chloroplast Ultrastructure in Cucumis sativus L. under Ca(NO3)2 Stress. Photosynthesis Research, 112, 205-214. https://doi.org/10.1007/s11120-012-9774-1 [52] Ali, B., Hayat, S. and Ahmad, A. (2007) 28-Homobrassinolide Ameliorates the Saline Stress in Chickpea (Cicer arie-tinum L.). Environmental and Experimental Botany, 59, 217-223. https://doi.org/10.1016/j.envexpbot.2005.12.002 [53] Xia, X.J., Huang, L.F., Zhou, Y.H., Mao, W.H., Shi, K., Wu, J.X., et al (2009) Brassinosteroids Promote Photosynthe-sis and Growth by Enhancing Activation of Rubisco and Expression of Photosynthetic Genes in Cucumis sativus. Planta, 230, 1185-1196. https://doi.org/10.1007/s00425-009-1016-1 [54] Fariduddin, Q., Mir, B.A., Yusuf, M. and Ahmad, A. (2014) 24-Epibrassinolide and/or Putrescine Trigger Physiologi-cal and Biochemical Responses for the Salt Stress Mitigation in Cucumis sativus L. Photosynthetica, 52, 464-474. https://doi.org/10.1007/s11099-014-0052-7 [55] Castle, J., Montoya, T. and Bishop, G.J. (2003) Selected Physiological Responses of Brassinosteroids: A Historical

Approach. In: Brassinosteroids: Bioactivity and Crop Productivity, Springer, Berlin, 45-68. https://doi.org/10.1007/978-94-017-0948-4_2 [56] Anket, S., Sharad, T., Vinod, K., Kanwar, M.K., Kesavan, A.K., Thukral, A.K., et al (2016) Pre-Sowing Seed Treat-

DOI: 10.12677/hjas.2020.106061

415

农业科学

周扬锟 等

ment with 24-Epibrassinolide Ameliorates Pesticide Stress in Brassica juncea L. through the Modulation of Stress Markers. Frontiers in Plant Science, 7, 1569. https://doi.org/10.3389/fpls.2016.01569

[57] Jiang, Y.P., Cheng, F., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., et al. (2012) Cellular Glutathione Redox Homeosta-sis Plays an Important Role in the Brassinosteroida Induced Increase in co2 Assimilation in Cucumis sativus. New Phytologist, 194, 932-943. https://doi.org/10.1111/j.1469-8137.2012.04111.x [58] Siefermann-Harms, D. (1987) The Light-Harvesting and Protective Functions of Carotenoids in Photosynthetic Mem-branes. Physiologia Plantarum, 69, 561-568. https://doi.org/10.1111/j.1399-3054.1987.tb09240.x [59] Guerrero, Y.R., Gonzalez, L.M., Dell’Amico, J., Nu?ez, M. and Pieters, A.J. (2015) Reversion of Deleterious Effects

of Salt Stress by Activation of ROS Detoxifying Enzymes via Foliar Application of 24-Epibrassinolide in Rice Seedl-ings. Theoretical & Experimental Plant Physiology, 27, 31-40. https://doi.org/10.1007/s40626-014-0029-8 [60] Lopez-Gomez, M., Hidalgo-Castellanos, J., Lluch, C. and Herrera-Cervera, J.A. (2016) 24-Epibrassinolide Ameliorates

Salt Stress Effects in the Symbiosis Medicago Truncatula-Sinorhizobium Meliloti and Regulates the Nodulation in Cross-Talk with Polyamines. Plant Physiology, and Biochemistry, 108, 212-221. https://doi.org/10.1016/j.plaphy.2016.07.017 [61] Rady, M.M. (2011) Effect of 24-Epibrassinolide on Growth, Yield, Antioxidant System and Cadmium Content of Bean

(Phaseolus vulgaris L.) Plants under Salinity and Cadmium Stress. Scientia Horticulturae, 129, 232-237. https://doi.org/10.1016/j.scienta.2011.03.035 [62] Goda, H., Shimada, Y., Asami, T., Fujioka, S. and Yoshida, S. (2002) Microarray Analysis of Brassinosteroid-Regulated

Genes in Arabidopsis. Plant Physiology, 130, 1319-1334. https://doi.org/10.1104/pp.011254 [63] Ding, H.D., Zhu, X.H., Zhu, Z.W., Yang, S.J., Zha, D.S. and Wu, X.X. (2012) Amelioration of Salt-Induced Oxidative

Stress in Eggplant by Application of 24-Epibrassinolide. Biologia Plantarum, 56, 767-770. https://doi.org/10.1007/s10535-012-0108-0 [64] Ahammed, G.J., He, B.B., Qian, X.J., Zhou, Y.H., Shi, K., Zhou, J., et al. (2017) 24-Epibrassinolide Alleviates Organ-ic Pollutants-Retarded Root Elongation by Promoting Redox Homeostasis and Secondary Metabolism in Cucumis sa-tivus, L. Environmental Pollution, 229, 922-931. https://doi.org/10.1016/j.envpol.2017.07.076 [65] Yancey, P.H. (2005) Organic Osmolytes as Compatible, Metabolic and Counteracting Cytoprotectants in High Osmo-larity and Other Stresses. Journal of Experimental Biology 208, 2819-2830. https://doi.org/10.1242/jeb.01730 [66] Ottow, E.A., Brinker, M., Teichmann, T., Fritz, E., Kaiser, W., et al. (2005) Populus Euphratica Displays Apoplastic

Sodium Accumulation, Osmotic Adjustment by Decreases in Calcium and Soluble Carbohydrates, and Develops Leaf Succulence under Salt Stress. Plant Physiology, 139, 1762-1772. https://doi.org/10.1104/pp.105.069971 [67] Talaat, N.B. and Shawky, B.T. (2012) 24-Epibrassinolide Ameliorates the Saline Stress and Improves the Productivity

of Wheat (Triticum aestivum L.). Environmental & Experimental Botany, 82, 80-88. https://doi.org/10.1016/j.envexpbot.2012.03.009 [68] Ashraf, M. and Foolad, M.R. (2007) Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resis-tance. Environmental and Experimental Botany, 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006 [69] Szabados, L. and Savoure, A. (2010) Proline: A Multifunctional Amino Acid. Trends in Plant Science, 5, 89-97.

https://doi.org/10.1016/j.tplants.2009.11.009 [70] Abbas, S., Latif, H.H. and Elsherbiny, E.A. (2013) Effect of 24-Epibrassinolide on the Physiological and Genetic

Changes on Two Varieties of Pepper under Salt Stress Conditions. Pakistan Journal of Botany, 45, 1273-1284. [71] Agami, R.A. (2013) Alleviating the Adverse Effects of Nacl Stress in Maize Seedlings by Pretreating Seeds with Sali-cylic Acid and 24-Epibrassinolide. South African Journal of Botany, 88, 171-177. https://doi.org/10.1016/j.sajb.2013.07.019 [72] Athar, H.U.R., Khan, A. and Ashraf, M. (2008) Exogenously Applied Ascorbic Acid Alleviates Salt-Induced Oxidative

Stress in Wheat. Environmental and Experimental Botany, 63, 224-231. https://doi.org/10.1016/j.envexpbot.2007.10.018 [73] Shabala, S., White, R.G., Djordjevic, M.A., Ruan, Y.L. and Mathesius, U. (2016) Root-to-Shoot Signalling: Integration

of Diverse Molecules, Pathways and Functions. Functional Plant Biology, 43, 85-86. https://doi.org/10.1071/FP15252 [74] Azhar, N., Su, N., Shabala, L. and Shabala, S. (2017) Exogenously Applied 24-Epibrassinolide (ebl) Ameliorates De-trimental Effects of Salinity by Reducing K+ Efflux via Depolarization-Activated K+ Channels. Plant and Cell Physi-ology, 58, 802-810. https://doi.org/10.1093/pcp/pcx026 [75] Dong, Y.J., Wang, W.W., Hu, G.Q., Chen, W.F., Zhuge, Y.P., Wang, Z.L., et al. (2017) Role of Exogenous

24-Epibrassinolide in Enhancing the Salt Tolerance of Wheat Seedlings. Journal of Soil Science and Plant Nutrition, 17, 554-569. https://doi.org/10.4067/S0718-95162017000300001 [76] Sharma, I., Bhardwaj, R. and Pati, P.K. (2013) Stress Modulation Response of 24-Epibrassinolide against Imidacloprid

DOI: 10.12677/hjas.2020.106061

416

农业科学

芸苔素内酯调控植物生长发育及抗逆性的研究进展

周扬锟等人[84]的研究则发现了BR的应用使得油菜子叶镉的积累降低了14%。Hayat等人[85]报道了BR的应用改善了镉胁迫下芸苔属植物的碳酸酐酶活性,叶绿素含量,净光合速率以及渗透调节。3.4.2.铜胁迫高浓度的铜诱导通过哈伯–韦斯反应和芬顿反应产生大量自由基,从而造成氧化应激[86],从而导致一系列氧化损伤。Fariduddin等人
推荐度:
点击下载文档文档为doc格式
9pp2747ak60fvam2gyzr6h1tx45d76007jb
领取福利

微信扫码领取福利

微信扫码分享