第二十二章 各种积分间的联系与场论初步
§1 各种积分间的联系
1.应用格林公式计算下列积分:
x2y2(1)?xydy?xydx ,其中L为椭圆2+2=1取正向;
Lab22(2)(3)正向;
(4)
; ?(x?y)dx?(x?y)dy, L同(1)
L?(x?y)dx?(xL22?y2)dy, L是顶点为A(1,1),B(3,2),C(2,5)的三角形的边界,取
??L(x3?y3)dx?(x3?y3)dy,L为x2?y2?1,取正向;
y?x(5)esinxdx?eLsinydy, L为矩形a?x?b,c?y?d 的边界,取正向;
(6)e[(ysinxy?cos(x?y))dx?(xsinxy?cos(x?y))dy],其中L是任意逐段光滑闭曲
L?xy线.
解(1)原式 =
???yD2?(?x2)dxdy???x2?y2dxdy
D??? =ab?2?0d??a2r2cos2??b2r2sin2?rdr(广义极坐标变换)
01??2?1?222222 =ab?acos??bsin?d??ab(a?b).
033(2)?(x?y)dx?(x?y)dy=??(1?1)dxdy?0.
??LD(3)原式 ???(2x?2(x?y))dxdy
D11?y?2?2y?153? ??2??ydxdy??2?ydy?y?3dx??ydy?y?3dx?
?1?24D4?? ??2((4)原式??215772143(y?y)dy??(5y?y2)dy)??.
2412932222(?3x?3y)dxdy??3(x?y)dxdy???. ????2DD?xy(?esiny?ecosx)dxdy ??Db?xdbd(5)原式 ???(?edx?sinydy??cosxdx?eydy)
acac ?(11dc?)(cosd?cosc)?(e?e)(sinb?sina). abee(6)P(x,y)?e[ysinxy?cos(x?y)],Q(x,y)?e[xsinxy?cos(x?y)],
xyxy?Q?yexy[xsinxy?cos(x?y)]?exy[sinxy?xycosxy?sin(x?y)] ?x?exy[xy(sinxy?cosxy)sinxy?ycos(x?y)?sin(x?y)],
?P?xexy[ysinxy?cos(x?y)]?exy[sinxy?xycosxy?sin(x?y)] ?y?exy[xy(sinxy?cosxy)?sinxy?xcosxy?sin(x?y)],
?Q?P??exy(y?x)cos(x?y), ?x?y所以,
原式?xye??(y?x)cos(x?y)dxdy, 其中D为L包围的平面区域. D2.利用格林公式计算下列曲线所围成的面积: (1)双纽线
r2?a2cos2?;
33(2)笛卡尔叶形线x?y?3axy(a?0);
(3)x?a(1?cost)sint,y?asint?cost,0?t?2?. 解(1)|D|?22??dxdy?2??dxdy?2?DD11xdy?ydx ?L2?2???????4?[rcos?rcos??rsin?(?rsin?)]d???4?rd???4?a2cos2?d??a2,
444其中D1由r?acos2?,?22?????所围成. 443at23at(2)作代换y?tx,则得曲线的参数方程为x?,y?.所以, 331?t1?t3a(1?2t3)3at(2?t3)dx?dt,dy?dt, 3232(1?t)(1?t)9a2t2从而,xdy?ydx?dt,于是,面积为 32(1?t)19a2D=?xdy-ydx=
2C2???032t2=a. dt322(1?t)(3)D=
1xdy?ydx= 2?c212
??a(1?cos2?0t)sint?a(2sintcos2t?sin3t)?asin2tcost?a[(1?cos2t)cost?2cost(?sint)sint]dt?
12??a(1?cos2?02t)sint?a(2sintcos2t?sin3t)?asin2tcost?a[(1?cos2t)cost?2cost(?sint)sint]dt
2??12a2?2 =a 4= (1)
?0sin2t(1?cos2t)cos2tdt
3.利用高斯公式求下列积分:
222xdydz?ydzdx?zdxdy.其中 ??s (a)S为立方体0?x,y,z?a的边界曲面外侧; (b)S为锥面x?y?z(0?z?h),下侧. 解:(a) =2 =2
222xdydz?ydzdx?zdxdy ??s222??(x?y?z)dxdydz
v?a0dx?dy?(x?y?z)dz
00aa =3a
(b)补充平面S1:x?y?h,z?h的上侧后,S?S1成为闭曲面的外侧, 而
2242222?h??hhhdxdy=== xdydz?ydzdx?zdxdy????2224S1Dxy 所以 : =
4222?h+ xdydz?ydzdx?zdxdy??SS?S1??xV2dydz?y2dzdx?z2dxdy
=2
???(x?y?z)dxdydz
Dxy =2
??dxdy?hx2?y2(x?y?z)dz
=
Dxy??[2h(x+y)+h2-2(x+y) x2?y2-(x2?y2)]dxdy
=
?2?0d??[2hr(cos??sin?)?h2?2r2(cos??sin?)?r2]rdr
0h14h=12 所以 (2)
?2?0(2cos??2sin??3)d?=
?4h 2?4?42224==?h xdydz?ydzdx?zdxdyh??h??22S333xdydz?ydzdx?zdxdy, 其中S是单位球面的外侧; ??S解:
333xdydz?ydzdx?zdxdy=3???(x?y?z)dxdydz ??SV =3
=
(3)设S是上半球面z? (a) (b)
?2?0d??sin?d???4d?
00?112 ? 5a2?x2?y2的上侧,求
??xdydz?ydzdx?zdxdy
S2??xzSdydz?(x2y?z2)dzdx?(2xy?y2z)dxdy
222解:补充平面S1:z?0,x?y?a,下侧后,S?S1成为闭曲面的外侧,而 (a)
所以
??xdydz?ydzdx?zdxdy?0
S1??xdydz?ydzdx?zdxdy???xdydz?ydzdx?zdxdy?3???dxdydz
SS?S1V431?a?=2?a3 322222 (b) ??xzdydz?(xy?z)dzdx?(2xy?yz)dxdy
=3?S1=
Dxy??2xydxdy=2?S2?0d??a0r3 sin? cos ?dr=0
所以
2222xzdydz?(xy?z)dzdx?(2xy?yz)dxdy ??2222xzdydz?(xy?z)dzdx?(2xy?yz)dxdy ??=
S?S1=
(4)
???(x?y?z)dxdydz =?V2222??0d??20sin?d??a04 ?4d? =?a5
5222222(x?y?z)dydz?(y?z?x)dzdx?(z?x?y)dxdy, ??S2222 S是 (x?a)?(y?b)?(z?c)?R 的外侧.
解:
222222(x?y?z)dydz?(y?z?x)dzdx?(z?x?y)dxdy, ??S =3
43 ==dxdydz3??R=4?R3 3V???3V4.用斯托克斯公式计算下列积分: (1)
?xL2y3dx?dy?zdz, 其中
222 (a)L为圆周x?y?a,22z?0,方向是逆时针;
(b)L为y?z?1,x?y 所交的椭圆,沿x轴正向看去,按逆时针方向; 解: (a)取平面z?0上由交线围成的平面块为S,上侧,由Stokes公式
dydz
dzdxdxdy?Lx2y3dx?dy?zdz=??S?/?x?/?y?/?z
x2y31z =?3??xS2y2dxdy
a2?x222 =?3?a0xdx?22?a?xy2dy
23 =?2 =??a0x(a?x)dx
2?6a 16 (b)取平面x?y上由交线围成的平面块为S,上侧,由由Stokes公式
?Lx2y3dx?dy?zdz=??Sdydzdzdxdxdy???
?x?y?zx2y31z22x??ydxdy S =?3 =?3Dxy22??xydxdy=??16a6
(2)(y?z)dx?(z?x)dy?(x?y)dz,L是从(a,0,0)经(0,a,0)至(0,0,a)回到(a,0,0)L?的三角形;
解: 三角形所在的平面为x?y?z?a,取平面x?y?z?a上由以上三角形围成的平面块为
S,取上侧,由stokes公式
?(y?z)dx?(z?x)dy?(x?y)dz
L