此外,一个过程可能有很多响应变量,而且这些响应变量的重要程度对我们来说也可能不尽相同。权重(Weight)w就是用来表示不同响应变量的重要程度的变量,它的默认值为1,取值范围一般从0.1到10,越小说明其越不重要,越大说明其重要性越强。
在单个意愿di及其对应的权重wi的基础上,就能够合成一个综合指标:复合意愿。它的一般定义公式为:重全部相等,则上式可以简化为:
,如果这些单个意愿的权
。复合意愿D就是我们需要创建
的一个新指标,有了它,就可以来考虑k个响应变量的同时优化问题了。
图一“望大型”意愿示意图
图二“望小型”意愿示意图
图三“望目型”意愿示意图
在掌握了多变量响应优化的原理之后,再加上专业DOE软件JMP的具体实施,相应的问题就迎刃而解了。遵循理论联系实际的风格,本文继续通过一个工业案例来介绍多指标DOE的实际应用。
场景:在半导体行业中,蚀刻率(Etch)和不均匀性(Ununiformity)都是非常重要的质量指标,它们的表现与生产过程中的间隙(Gap)和功率(Power)这两个因素密切相关(具体信息参见图四)。在以往的DOE研究中,曾分别独立地对Etch和Ununiformity做过优化,但产生的矛盾是各自所要求的Gap和Power之间的设置差距较大,怎样才能兼顾两种不同效应的表现,找到最合适的输入控制因素的设定呢?
图四某半导体生产流程的输入输出表
显然,此时的半导体技术人员已处于流程的优化阶段,但同时正面临着一个“鱼与熊掌,孰轻孰重”的两难境地,寄希望于普通的DOE理论是于事无补的。而基于复合意愿理论的DOE方法就有了用武之地,使我们“鱼与熊掌,一举兼得”。
首先,根据已掌握的信息,按照中心复合设计的原则,制定12次运行次数的试验规模以及每次试验时的Gap和Power的具体设置。接着,根据既定的试验计划进行实施,并且同时收集每次试验时Etch和Ununiformity的响应值。将以上结果汇总之后,即可得到如图五所示的JMP文件格式的数据表格。
图五中心复合设计的试验结果汇总表
然后,与以往一样,运用JMP软件中的“模型拟合”的操作平台,就可以得到生产
过程的量化分析。我们从大量的分析报表中精选了两个直观形象的图形(图六和图七)来具体说明分析结果。
图六为等高线图,平面地二维坐标表示输入变量Gap和Power,而红蓝两色的等高线分别表示输出变量Etch和Ununiformity。红色阴影区域是Etch的“不可行区域”,蓝色阴影区域是Ununiformity的“不可行区域”,中间一带的白色区域是可以同时满足Etch和Ununiformity要求的“可行域”,它为我们指明了Gap和Power的合理设置范围,也可以将它看作能使输出结果最稳健的取值区域。
图六等高线图
图七为预测刻画器,它是一个二维坐标系矩阵。我们可以从中观察到输入变量与输出变量之间的变化规律,各个输出变量与其对应的单个意愿之间的关系,以及各个输入变量对复合意愿的影响。更可以精确地找到理想的因子设置:Gap=1.110417,Power=371.0027,它们将会形成复合意愿的最大值:D=0.571931,它所对应的实际输出因子的结果是:Etch=1124.607,Ununiformity=103.5209。与实际要求相比较,这样的结果无疑是令人满意的,既能“顾此”,亦能“不失彼”。
图七预测刻画图
别具特色的稳健参数设计—DOE系列之六
之前的五个DOE系列已经系统地介绍了很多经典试验设计的基本原理和使用技巧。但是,DOE是一个理论和实践高度联系的统计科学门类,在不到一百年的发展历程中,企业界不断地向学术界提出新的意见和建议,而学术界也积极响应,推陈出新地向企业界提供了大量理论指导,逐步形成了更多专业化、精细化的DOE应用分支。比如说,稳健参数设计(RobustParameterDesign)(也称健壮设计、鲁棒设计,简称参数设计)就是其中的典型代表,它是一种在研究工程实际问题中很有价值的统计方法。日本的田口玄一(GenichiTaguchi)博士在参数设计方法方面贡献非常突出,他在设计中引进SN比(信噪比)的概念,并以此作为评价参数组合优劣的一种测度,这是很有价值的,以至于很多文献和软件都把稳健参数设计方法称为田口设计(TaguchiDesign)。
稳健参数设计最主要的贡献是通过选择可控因子的水平组合来减少一个系统(或产品、过程)对噪声变化的敏感性,从而达到减少此系统性能波动的目的。同样,它的实现也离不开统计分析软件的支持。高端六西格玛统计分析软件JMP是目前业界最先进的六西格玛工具,其在DOE方面的表现最为优秀,在本期案例中我们将继续以中英文双语版JMP软件作为DOE方案实现的载体。
通俗地说,稳健参数设计区别于其它DOE方法最显著的特征是在关注响应平均值改善的同时,更关注其标准差的改善。那么它是如何实现标准差的改善,也就是说,如何使响应变量的变差减小呢?很自然的想法是,通过减小噪声的变差来实现减小响应变量的变差,噪声因子的来源可能有很多类型,例如原材料参数的变化、环境的变化、载荷因子的变化、单元间的差异和耗损降级等等。通常噪声因子是无处不在的,减小噪声的变差往往需要付出较高的经济代价。稳健参数设计则是更好的一种策略选择。这种策略是通过探索可控因子与噪声因子间的相互作用,从而用改变可控因子的水平组合的办法来减小响应变量的变差。因为可控因子通常易于改变,所以稳健参数设计比直接减小噪声变差更经济更方便。
我们可以通过一个简单直观的例子来理解这一点。正如图一所示,可控因子X本身受到噪声的影响而有波动,且响应变量Y与这个可控因子的关系是非线性的,则我们可以选择斜率较小的平坦区域从而使响应变量的变差减小。这样减小变差的方法比直接减小可控因子的噪声波动要便宜得多。一般地说,工程技术人员在系统设计(SystemDesign)选择确定了系统的构造之后,把选择参数的最佳设置以求减少响应变量变差的方法称为参数设计(ParameterDesign);再进一步把如何限定可控因子的噪声波动的方法称为容差设计(ToleranceDesign)。
图一稳健参数设计的原理示意图
目前,在稳健参数设计中公认较好的试验与建模的方法是:用乘积表进行位置与散度建模。接下来,我们将会详细说明。