无论是从图一的Pareto图,还是从图二的正态性图,我们都能清晰地发现每周
的更新频率和关键词的类型是影响点击数的关键因子。由此可见,在部分因子设计的思想指引下,多因子试验的时间成本、经济成本大大减少,而主要的分析目的没有受到丝毫的影响,多因子DOE的魅力正吸引着更多的工作人员将DOE的分析方法应用到更多的应用领域中。
用DOE方法最优化质量因子配置-DOE系列之四
经过筛选试验的精简和全因子试验的描述,很多人会满足已经取得的成绩,但也有一些精益求精的人会提出这样的问题:现有的最佳因子水平组合一定是所有因子设置中最理想的选择吗?如果不是,又应当如何找出最优化的因子设置?确实,以往的DOE侧重于分析哪些因子是重要的,到底有多重要以及它们之间是否会相互影响,却没有刻意去从整体中寻觅最佳的因子设置。为了解决这个问题,需要引入DOE中另一种新方法——响应曲面方法(ResponseSurfaceMethodology,即RSM),这也是我们本期DOE系列介绍的主题。在这里,笔者仍将借助目前业界公认的高端六西格玛统计分析软件JMP来为大家展现响应曲面方法的实现和应用,顺便提及,JMP6是迄今业界唯一的中英文双语版六西格玛软件,来自全球顶尖的统计学软件集团SAS。
在实际工作中,常常需要研究响应变量究竟如何依赖于自变量X的,进而能找到自变量的设置使得响应变量得到最佳值。当自变量的个数较少(通常不超过4个),则响应曲面方法是最值得推荐的方法,适合于要求响应变量望大(即越大越好)、望小(即越小越好)和望目(即越接近目标值越好)等各种常见情形。
通常来说,DOE的核心技术可分为试验计划和数据分析两大类,响应曲面方法也不例外。在数据分析方面,它和以前介绍的方法没有什么本质的不同,但在试验计划方面,则有显著的改进。响应曲面方法的试验计划主要有中心复合设计和Box-Behnken设计两种形式,具体用图形说明如下。
图一三因子中心复合设计布点示意图
图一是以三维空间立方体的形式展示了一个三个因子的中心复合设计的试验计划示意图,在以下的叙述中给出的坐标都已将各因子代码化。整个试验由下面三部分试验点构成。
1.立方体点(CubePoint),用蓝色点表示。各点坐标皆为1或-1,这是
全因子试验相同的部分。2.中心点(CenterPoint),用绿色点表示。各点的三维坐标皆为0。3.轴点(Axial(旋转性指数)外,其余维度的自变量坐标皆为0。αPoint),用黄色点表示。除了一维自变量坐标为±在三个因子情况下,共有6个轴点。试验计划的另一种形式就是Box-Behnken设计。这种设计的特点是将因子各试验点取在立方体每条边的中点上。
图二三因子Box-Behnken设计布点示意图
图二同样以三维空间立方体的形式展示了一个三个因子的Box-Behnken设计的试验计划示意图。整个试验由下面两部分试验点构成。1.边中心点(SideCenterPoint),用白色点表示。除了一维自变量坐标为0外,其余维度的自变量坐标皆为±1。在三个因子情况下,共12个边中心点。2.中心点(CenterPoint),用黑色点表示。各点的三维坐标皆为0。由以上两个示意图可以清晰地发现,响应曲面方法有规律、有目的地在试验计划中增添了有限次数的各因子的中心试验点和拓展试验点,这为研究曲率的变化趋势、最优区域的确定等提供了极大的便利。关于响应曲面方法在数据分析方面的特点,由于其和一般的因子设计DOE非常类似,此处就不做赘述。主要还是通过一个工业案例来一并介绍响应曲面方法的实际应用。场景:如何通过催化剂(Catalyst)和稳定剂(Stabilizer)配置比例的具体设定,才能获得某化学试剂的最低不纯度(Impurities%)?因子催化剂%(Catalyst)稳定剂%(Stabilizer)低水平(-1)0.5860.586高水平(+1)3.4143.414显然,此时的工程师已经不满足于从仅有的四次全因子组合中选择最优的选项,而是希望在一个更广阔的可行性空间里充分挖掘过程的潜能,寻觅到一个最理想或是最接近理想值的配置比例。当然,实现这一目的的同时还要兼顾试验的经济成本和时间次数等。这时候,将传统的因子设计方法搁置一旁,适时地调用响应曲面方法,往往会起到最佳的效果。为了提高我们应用DOE的工作效率,本文将直接使用专业统计软件JMP进行响应曲面方法分析,试图获得化学试剂的不纯度最低时的配置比例。
首先,我们根据实际情况,以中心复合设计为原则,迅速地确定了13次运行次数的试验规模以及每次试验时的因子具体设置。接着,根据既定的试验计划进行实施,并且及时收集每次试验的响应值。将以上结果汇总之后,即可得到如图三所示的JMP文件格式的数据表格。
图三中心复合设计的试验结果汇总表
然后,运用“模型拟合”的操作平台,就可以得到具体详尽的定量分析。遵循我们“强
调通俗易懂,淡化统计原理”的一贯原则,我们不多在统计参数上花费笔墨,依然通过形象直观的图形来说明分析结果。在求出精确解之前,我们先观察一下图四所示的等高线图(ContourPlot)和图五所示的曲面图(SurfacePlot)。从两个图中都可以清楚地看到,在原试验范围内确实存在一个最小值。
图四等高线图
图五曲面图
那么这个最小值究竟是多少?它又是在什么条件下产生的呢?进一步借助JMP
自带的模型预测刻画器(PredictionProfiler),如图六所示,我们可以轻轻松松地得到最优化的配置比例:催化剂%=1.410568,稳定剂%=3.282724,这时产生的最低不纯净度%=3.156636。顺便提及,笔者尝试了多种统计分析软件,只发现JMP集成了模拟功能,实在难能可贵。
至此,我们匆匆走过了应用DOE优化流程的探索之路。其实在DOE的优化过程中,还有很多其他实用的知识和技巧,笔者将会在今后的文章中在做深入的介绍。
图六模型的预测刻画器
顾此不失彼的DOE-DOE系列之五
本连载前四个系列已经介绍了几种不同背景、不同要求的情况下,应用DOE的原理和技巧。但细心的读者会发现之前的案例有一个共同的特点(或者称为局限):数据分析仅限于单个响应变量。在实际工作中,常常会遇到要同时考虑多个响应变量的情况,例如希望断裂强度越大越好,同时希望厚度越小越好;希望质量水平越高越好,但同时希望成本越低越好等等。这类问题与古人所说的有些相像:“鱼与熊掌,能否兼得”?确实,如何同时考虑多项指标是个很复杂的课题。今天我们的任务就是另辟蹊径,设法解决处理多指标问题,使DOE也可以顾此不失彼。DOE方法的实现离不开统计分析软件的支持,高端六西格玛统计分析软件JMP是目前业界最先进的六西格玛工具,其在DOE方面的表现最为优秀,本期案例我们仍以中英文双语版JMP软件作为DOE方案实现的载体。
其实,解决这个问题的关键是能否创建一个新指标,用它来代表所有的旧指标,然后通过优化这个新指标,就可以实现多指标的平衡化最佳,也就是总体最佳了。这个新指标用什么来表示呢?答案是首先将原先的响应变量转化为另一个变量:意愿(Desirability)d,它的建立可以将求任意响应变量达到最优的问题转化为求一个取值范围在0至1之间的单个意愿达到最大的问题。意愿的函数形式可分为三大类,同时根据实际情况,分别确定它们的容许范围,即“下限”(Lower)和“上限”(Upper)。当试验的指标是越大越好,即“望大”型(Maximize)时,可以用图一来描述此时意愿的规律;当试验的指标是越小越好,即“望小”型(Minimize)时,可以用图二来描述此时意愿的规律;当试验的指标是越接近某值越好,即“望目”型(Target)时,可以用图三来描述此时意愿的规律。这三种不同的函数形式反映了三种不同的指标需求,它们的共同特征是d的取值越接近于1表示越结果越令人满意,d的取值越接近于0则表示相反。