函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经
过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键;
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换;
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
求定义域:
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。 指是分数底正数,数零没有零次幂。 限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。 负数不能开平方,分母为零无意义。 分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。
解一元一次不等式:
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。 先去分母再括号,移项别忘要变号。 同类各项去合并,系数化“1”注意了。 同乘除正无防碍,同乘除负也变号。
第- 26 -页 共31页
解一元二次不等式:
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。 a正开口它向上,大于零则取两边。 代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。 小于零将没有解,开口向下正相反。
13.1 用公式法解一元二次方程 要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。 确定参数abc,计算方程判别式。 判别式值与零比,有无实根便得知。 有实根可套公式,没有实根要告之。
用常规配方法解一元二次方程:
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。 左边分解右合并,直接开方去解题。 该种解法叫配方,解方程时多练习。
用间接配方法解一元二次方程:
已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
第- 27 -页 共31页
完全平方等常数,间接配方显优势 【注】 恒等式
解一元二次方程:
方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。 b、c同时不为零,因式分解或配方, 也可直接套公式,因题而异择良方。
正比例函数的鉴别:
判断正比例函数,检验当分两步走。
一量表示另一量, 有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。 一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质:
正比函数图直线,经过 和原点。
K正一三负二四,变化趋势记心间。 K正左低右边高,同大同小向爬山。
第- 28 -页 共31页
K负左高右边低,一大另小下山峦。
一次函数:
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。 K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
反比例函数:
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。 K正左高右边低,一三象限滑下山。 K负左低右边高,二四象限如爬山。
二次函数:
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。
第- 29 -页 共31页
左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。 【注】基础抛物线
列方程解应用题:
列方程解应用题,审设列解双检答。 审题弄清已未知,设元直间两办法。 列表画图造方程,解方程时守章法。 检验准且合题意,问求同一才作答。
第- 30 -页 共31页
两点间距离公式:
同轴两点求距离,大减小数就为之。 与轴等距两个点,间距求法亦如此。 平面任意两个点,横纵标差先求值。 差方相加开平方,距离公式要牢记。
第- 31 -页 共31页