5、设两条直线分别为,l1:y?k1x?b1 l2:y?k2x?b2 若l1//l2,则有l1//l2?k1?k2且b1?b2。 若l?l?k?k??1
1212
6、点P(x0,y0)到直线y=kx+b(即:kx-y+b=0) 的距离: d?
kx0?y0?bk?(?1)22?kx0?y0?bk?12
7、抛物线y?ax2?bx?c中, a b c,的作用
(1)a决定开口方向及开口大小,这与y?ax2中的a完全一样.
(2)b和a共同决定抛物线对称轴的位置.由于抛物线y?ax2?bx?c的对称轴是直线
x??③
bb
,故:①b?0时,对称轴为y轴;②?0(即a、b同号)时,对称轴在y轴左侧;
a2ab?0(即a、b异号)时,对称轴在y轴右侧. 口诀 --- 同左 异右 a (3)c的大小决定抛物线y?ax2?bx?c与y轴交点的位置.
当x?0时,y?c,∴抛物线y?ax2?bx?c与y轴有且只有一个交点(0,c): ①c?0,抛物线经过原点; ②c?0,与y轴交于正半轴; ③c?0,与y轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则
b?0. a
第- 21 -页 共31页
十一,中考点击
考点分析:
内容 1、函数的概念和平面直角坐标系中某些点的坐标特点 2、自变量与函数之间的变化关系及图像的识别,理解图像与变量的关系 3、一次函数的概念和图像 4、一次函数的增减性、象限分布情况,会作图 5、反比例函数的概念、图像特征,以及在实际生活中的应用 6、二次函数的概念和性质,在实际情景中理解二次函数的意义,会利用二次函数刻画实际问题中变量之间的关系并能解决实际生活问题 要求 Ⅰ Ⅰ Ⅰ Ⅱ Ⅱ Ⅱ
命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题.会求一元二次方程的近似值.
分析近年中考,尤其是课改实验区的试题,预计2009年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理解.同时将注重考查二次函数,特别是二次函数的在实际生活中应用.
十二,初中数学助记口诀(函数部分)
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)
第- 22 -页 共31页
2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍, 同左上加 异右下减
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
1
对称点坐标:
对称点坐标要记牢,相反数位置莫混淆, X轴对称y相反, Y轴对称,x前面添负号; 原点对称最好记,横纵坐标变符号。
关于x轴对称
y?ax2?bx?c关于x轴对称后,得到的解析式是y??ax2?bx?c;
y?a?x?h??k关于x轴对称后,得到的解析式是y??a?x?h??k;
22
关于y轴对称
第- 23 -页 共31页
y?ax2?bx?c关于y轴对称后,得到的解析式是y?ax2?bx?c;
y?a?x?h??k关于y轴对称后,得到的解析式是y?a?x?h??k;
22
关于原点对称
y?ax2?bx?c关于原点对称后,得到的解析式是y??ax2?bx?c; y?a?x?h??k关于原点对称后,得到的解析式是y??a?x?h??k
22
关于顶点对称
b2 y?ax?bx?c关于顶点对称后,得到的解析式是y??ax?bx?c?;
2a22y?a?x?h??k关于顶点对称后,得到的解析式是y??a?x?h??k.
22
关于点?m,n?对称
y?a?x?h??k关于点?m,n?对称后,得到的解析式是y??a?x?h?2m??2n?k
22根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.
口诀--- ---- Y反对X,X反对Y,都反对原点
2 自变量的取值范围:
分式分母不为零,偶次根下负不行;零次幂底数不为零,
函数图像的移动规律:
第- 24 -页 共31页
若把一次函数解析式写成y=k(x+0)+b,
二次函数的解析式写成y=a(x+h)2+k的形式, 则用下面后的口诀:
“左右平移在括号,上下平移在末稍, 左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:
一次函数是直线,图像经过仨象限; 正比例函数更简单,经过原点一直线; 两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与Y轴来相见,
k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反; k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:
反比例函数有特点,双曲线相背离的远;
k为正,图在一、三(象)限;k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减;图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
第- 25 -页 共31页