1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1、kafka的message包括哪些信息
一个Kafka的Message由一个固定长度的header和一个变长的消息体body组成
header部分由一个字节的magic(文件格式)和四个字节的CRC32(用于判断body消息体是否正常)构成。当magic的值为1的时候,会在magic和crc32之间多一个字节的数据:attributes(保存一些相关属性,比如是否压缩、压缩格式等等);如果magic的值为0,那么不存在attributes属性
body是由N个字节构成的一个消息体,包含了具体的key/value消息 2、怎么查看kafka的offset
0.9版本以上,可以用最新的Consumer client 客户端,有consumer.seekToEnd() / consumer.position() 可以用于得到当前最新的offset: 3、hadoop的shuffle过程
一、Map端的shuffle
Map端会处理输入数据并产生中间结果,这个中间结果会写到本地磁盘,而不是HDFS。每个Map的输出会先写到内存缓冲区中,当写入的数据达到设定的阈值时,系统将会启动一个线程将缓冲区的数据写到磁盘,这个过程叫做spill。
在spill写入之前,会先进行二次排序,首先根据数据所属的partition进行排序,然后每个partition中的数据再按key来排序。partition的目是将记录划分到不同的Reducer上去,以期望能够达到负载均衡,以后的Reducer就会根据partition来读取自己对应的数据。接着运行combiner(如果设置了的话),combiner的本质也是一个Reducer,其目的是对将要写入到磁盘上的文件
1
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
先进行一次处理,这样,写入到磁盘的数据量就会减少。最后将数据写到本地磁盘产生spill文件(spill文件保存在{mapred.local.dir}指定的目录中,Map任务结束后就会被删除)。
最后,每个Map任务可能产生多个spill文件,在每个Map任务完成前,会通过多路归并算法将这些spill文件归并成一个文件。至此,Map的shuffle过程就结束了。 二、Reduce端的shuffle
Reduce端的shuffle主要包括三个阶段,copy、sort(merge)和reduce。 首先要将Map端产生的输出文件拷贝到Reduce端,但每个Reducer如何知道自己应该处理哪些数据呢?因为Map端进行partition的时候,实际上就相当于指定了每个Reducer要处理的数据(partition就对应了Reducer),所以Reducer在拷贝数据的时候只需拷贝与自己对应的partition中的数据即可。每个Reducer会处理一个或者多个partition,但需要先将自己对应的partition中的数据从每个Map的输出结果中拷贝过来。
接下来就是sort阶段,也成为merge阶段,因为这个阶段的主要工作是执行了归并排序。从Map端拷贝到Reduce端的数据都是有序的,所以很适合归并排序。最终在Reduce端生成一个较大的文件作为Reduce的输入。
最后就是Reduce过程了,在这个过程中产生了最终的输出结果,并将其写到HDFS上。 4、spark集群运算的模式
2
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Standalone 模式,对于大多数情况 Standalone 模式就足够了,如果企业已经有 Yarn 或者 Mesos 环境,也是很方便部署的。
standalone(集群模式):典型的Mater/slave模式,不过也能看出Master是有单点故障的;Spark支持ZooKeeper来实现 HA
on yarn(集群模式): 运行在 yarn 资源管理器框架之上,由 yarn 负责资源管理,Spark 负责任务调度和计算
on mesos(集群模式): 运行在 mesos 资源管理器框架之上,由 mesos 负责资源管理,Spark 负责任务调度和计算
on cloud(集群模式):比如 AWS 的 EC2,使用这个模式能很方便的访问 Amazon的 S3;Spark 支持多种分布式存储系统:HDFS 和 S3 5、HDFS读写数据的过程
读:
1、跟namenode通信查询元数据,找到文件块所在的datanode服务器 2、挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流
3、datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)
4、客户端以packet为单位接收,现在本地缓存,然后写入目标文件 写:
1、根namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在
2、namenode返回是否可以上传
3、client请求第一个 block该传输到哪些datanode服务器上
3
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
4、namenode返回3个datanode服务器ABC
5、client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端
6、client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答
7、当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。
6、RDD中reduceBykey与groupByKey哪个性能好,为什么
reduceByKey:reduceByKey会在结果发送至reducer之前会对每个mapper在本地进行merge,有点类似于在MapReduce中的combiner。这样做的好处在于,在map端进行一次reduce之后,数据量会大幅度减小,从而减小传输,保证reduce端能够更快的进行结果计算。
groupByKey:groupByKey会对每一个RDD中的value值进行聚合形成一个序列(Iterator),此操作发生在reduce端,所以势必会将所有的数据通过网络进行传输,造成不必要的浪费。同时如果数据量十分大,可能还会造成OutOfMemoryError。
通过以上对比可以发现在进行大量数据的reduce操作时候建议使用reduceByKey。不仅可以提高速度,还是可以防止使用groupByKey造成的内存溢出问题。
7、spark2.0的了解
4
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
更简单:ANSI SQL与更合理的API 速度更快:用Spark作为编译器 更智能:Structured Streaming
8、 rdd 怎么分区宽依赖和窄依赖
宽依赖:父RDD的分区被子RDD的多个分区使用 例如 groupByKey、reduceByKey、sortByKey等操作会产生宽依赖,会产生shuffle
窄依赖:父RDD的每个分区都只被子RDD的一个分区使用 例如map、filter、union等操作会产生窄依赖
9、spark streaming 读取kafka数据的两种方式 这两种方式分别是: Receiver-base
使用Kafka的高层次Consumer API来实现。receiver从Kafka中获取的数据都存储在Spark Executor的内存中,然后Spark Streaming启动的job会去处理那些数据。然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Write Ahead Log,WAL)。该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。
Direct
5