4.如图所示:
(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;
(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________; (3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________; (4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,
因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________; (5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.
第
4
题
图 第 5 题图
5.如图,(1)如果∠1=________,那么DE∥ AC; (2) 如果∠1=________,那么EF∥ BC;
(3)如果∠FED+ ∠________=180°,那么AC∥ED; (4) 如果∠2+ ∠________=180°,那么AB∥DF.
6.
11
7.
课后作业:习题5.2 第1,2,4题. 补充练习:
已知:如图,AB ∥CD,EF分别交 AB、CD 于 E、F,EG平分∠ AEF ,
FH平分∠ EFD EG与 FH平行吗?为什么?
§5.3平行线的性质(一)
教学目标
1.使学生理解平行线的性质和判定的区别.
2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
重点难点
重点:平行线的三个性质.
难点:平行线的三个性质和怎样区分性质和判定. 关键:能结合图形用符号语言表示平行线的三条性质. 教学过程 一、复习
1.如何用同位角、内错角、同旁内角来判定两条直线是否平行? 2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
二、新授
1.实验观察,发现平行线第一个性质
请学生画出下图进行实验观察.
设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?
请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?
平行线性质1(公理):两直线平行,同位角相等. 2.演绎推理,发现平行线的其它性质
(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.
求证:∠1= ∠2.
(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.
求证:∠1+∠2=180°.
在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.
3.平行线判定与性质的区别与联系
投影:将判定与性质各三条全部打出.
12
(1)性质:根据两条直线平行,去证角的相等或互补. (2)判定:根据两角相等或互补,去证两条直线平行.
联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.
三、例题
例2如图所示,AB∥CD,AC∥BD.找出图中相等的角与互补的角.
A B
37C
12458D
6
此题一定要强调,哪两条直线被哪一条直线所截.
答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC+∠ACD=180°,∠ABD+∠CDB=180°,∠CAB+∠DBA=180°,∠ACD+∠BDC=180°.
相等的角还有:∠ACD=∠ABD,∠BAC=∠BDC.(同角的补角相等) 例3如图所示.已知:AD∥BC,∠AEF=∠B,求证:AD∥EF. 分析:(执果索因)从图直观分析,欲证AD∥EF,只需∠A+∠AEF=180°,
(由因求果)因为AD∥BC,所以∠A+∠B=180°,又∠B=∠AEF,所以∠A+∠AEF=180°成立.于是得证. 证明:因为 AD∥BC,(已知)
所以 ∠A+∠B=180°.(两直线平行,同旁内角互补) 因为 ∠AEF=∠B,(已知)
所以 ∠A+∠AEF=180°,(等量代换)
所以 AD∥EF.(同旁内角互补,两条直线平行)
AEDF四、练习:
1.如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD. 求证:∠1+∠2=90°. 证明:因为 AB∥CD, 所以 ∠BAC+∠ACD=180°,
又因为 AE平分∠BAC,CE平分∠ACD, 所以?1??BAC,?2??ACD,
故?1??2?(?BAC??ACD)??1800?900. 即 ∠1+∠2=90°. (理由略)
2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析) 证明:(学生板书)
13
BC12121212小结
我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.
作业:
1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
5.3平行线性质(二)
[教学目标]
6. 经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力 7. 理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论 8. 能够综合运用平行线性质和判定解题 [教学重点与难点]
重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念 难点:平行线性质和判定灵活运用
[教学设计]
一.复习引入 1.平行线的判定方法有哪些? 2.平行线的性质有哪些? 3.完成下面填空
已知:BE是AB的延长线,AD//BC,AB//CD,若?D?100 则?C,?A,?EBC
4.a?b,c?b那么a,c的位置关系如何?
二.新课
1.例1,已知a//c,a?b,直线b与c垂直吗?为什么?
例2如图是一块梯形铁片的残余部分,量得?A?100,?B?115,梯形另外两个角分别是多少度?
???
2.实践 与探究
14
(1)学生操作:用三角尺和直尺画平行线,做成一张5?5 个格子的方格纸。观察并思考:做出的方格纸的一部分,
线段B1C1,B2C2?B5C5都与两条平行线A1B5,A2C5垂直 吗?它们的长度相等吗?
教师给出两条平行线的距离定义:同时垂直于两条平行线,
并且夹在这两条平行线间的线段长度叫做两条平行线的距离。
问题:AB//CD,在CD上任取一点E,作EF?AB,垂足F,问EF是否垂直DC?垂线段EF是平行线AB、CD的距离吗?
结论:两条平行线的距离处处相等,而不随垂线段的位置而改变 3.命题和它的构成 下列语句,分析语句的特点
(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。 (2)对顶角相等
(3)等式两边同加上同一个数,结果仍是等式 (4)如果两条直线不平行,那么同位角不相等
这些句子都是对某一件事情作出“是”或“不是”的判断 命题:判断一件事情的句子,叫做命题
(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项 (2)形式:通常写成“如果?,那么?”的形式, 三.巩固练习
1.“等式两边乘以同一个数,结果仍是等式”是命题吗?如果是,它的题设和结论分别是什么? 2举出一些命题的例子 四.作业 课本P25
5.4平移
[教学目标]
9. 了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题 10. 培养学生的空间观念,学会用运动的观点分析问题.
[教学重点与难点]
重点:平移的概念和作图方法. 难点:平移的作图.
[教学设计]
一. 观察图形 形成印象 生活中有许多美丽的图案,他们都有着共同的特点,请
同学们欣赏下面图案.
15