好文档 - 专业文书写作范文服务资料分享网站

人教版七年级下学期数学教案全册 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

人教版七年级下学期全册教案

5.1相交线

[教学目标]

1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力 2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用

它解决一些简单问题 [教学重点与难点]

重点:邻补角与对顶角的概念.对顶角性质与应用 难点:理解对顶角相等的性质的探索 [教学设计]

一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角 在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。 观察剪刀剪布的过程,引入两条相交直线所成的角。 学生观察、思考、回答问题

教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题, 二.认识邻补角和对顶角,探索对顶角性质

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配 共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达

?AOC与?AOD有一条公共边OA,它们的另一边互为反向延长线;

?AOC与?BOD有公共的顶点O,而且?AOC的两边分别是?BOD两边的反向延长线

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表: 两条直线相交 所形成的角 分类 位置关系 数量关系 教师提问:如果改变?AOC的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质 三.初步应用 练习: 下列说法对不对

(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角 (2) 邻补角是互补的两个角,互补的两个角是邻补角 (3) 对顶角相等,相等的两个角是对顶角

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

1

四.巩固运用例题:如图,直线a,b相交,?1?40,求?2,?3,?4的度数。

[巩固练习](教科书5页练习)已知,如图,?AOC?35?,?COF?80?,求:?AOD和?DOF的度数 [小结]

邻补角、对顶角.

? [作业]课本P9-1,2P10-7,8 [备选题]

一判断题:

如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( ) 两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( ) 二填空题

1如图,直线AB、CD、EF相交于点O,?AOE的对顶角是 ,

?COF的邻补角是 ?若?AOC:?AOE=2:3,?EOD?130,则?BOC=

2如图,直线AB、CD相交于点O

?COE??FOB?90?,?AOC?30?则?EOF?

5.1.2 垂线

[教学目标]

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。 2.掌握点到直线的距离的概念,并会度量点到直线的距离。 3.掌握垂线的性质,并会利用所学知识进行简单的推理。 [教学重点与难点]

1.教学重点:垂线的定义及性质。 2.教学难点:垂线的画法。 [教学过程设计] 一. 复习提问:

1、叙述邻补角及对顶角的定义。 2、对顶角有怎样的性质。 二.新课: 引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

C(一)垂线的定义

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线AB、CD互相垂直,记作AB?CD,垂足为O。 AOB 请同学举出日常生活中,两条直线互相垂直的实例。

2

D注意:

1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图)

?AB?CD(已知),

??AOC??COB??BOD??AOD?90?(垂直定义).反之,

??AOC?90?(已知)

?AB?CD(垂直定义)

(二)垂线的画法 探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条? 2、经过直线l上一点A画l的垂线,这样的垂线能画出几条? 3、经过直线l外一点B画l的垂线,这样的垂线能画出几条? 画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。 (三)垂线的性质

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即: 性质1 过一点有且只有一条直线与已知直线垂直。 练习:教材第7页 P探究:

如图,连接直线l外一点P与直线l上各点O, A,B,C,??,其中PO?l(我们称PO为点P到直线 l的垂线段)。比较线段PO、PA、PB、PC??的长短,这些线段

ACBO中,哪一条最短?

性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。 简单说成: 垂线段最短。

(四)点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 如上图,PO的长度叫做点 P到直线l的距离。

例1 如图,?BAC?90?,AD?BC,垂足为D,则下列结论: (1)AB与AC互相垂直;

(2)AD与AC互相垂直;

(3)点C到AB的垂线段是线段AB; (4)点A到BC的距离是线段AD;

(5)线段AB的长度是点B到AC的距离; (6)线段AB是点B到AC的距离。 其中正确的有( ) A. 1个 B. 2个

3

ABDCFDAOCEBC. 3个 D. 4个 解:A

例2 如图,直线AB,CD相交于点O,

OE?CD,OF?AB,?DOF?65?,求?BOE和?AOC的度数。

解:略

例3 如图,一辆汽车在直线形公路AB上由A 向B行驶,M,N分别是位于公路两侧的村庄, 设汽车行驶到点P位置时,距离村庄M最近,

行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

解:如图所示,过M,N两点分别作MP?AB,NQ?AB,垂足分别为P,Q,则点P,Q即为所求。练习:

1. 如图,已知?ABC中,?BAC为钝角。

C(1)画出点C到AB的垂线段;(2)过A点画BC的垂线;

(3)点B到AC的距离是多少?AB2.教材第9页3、4

教材第10页9、10、11、12 小结:

1. 要掌握好垂线、垂线段、点到直线的距离这几个概念;

2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形; 3. 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。 作业:教材第9页5、6.

5.2.1 平行线

[教学目标]

1.理解平行线的意义,了解同一平面内两条直线的位置关系; 2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角; 4.了解平行线在实际生活中的应用,能举例加以说明. [教学重点与难点]

1.教学重点:平行线的概念与平行公理; 2.教学难点:对平行公理的理解. [教学过程] 一、复习提问

相交线是如何定义的?

4

二、新课引入

平面内两条直线的位置关系除平行外,还有哪些呢?

制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念. 三、同一平面内两条直线的位置关系

1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b. (画出图形)

2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行. 3.对平行线概念的理解:

两个关键:一是“在同一个平面内”(举例说明);二是“不相交”. 一个前提:对两条直线而言. 4.平行线的画法

平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线). 四、平行公理

1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”. 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 提问垂线的性质,并进行比较.

3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c. 五、三线八角

由前面的教具演示引出.

如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.

六、课堂练习

1.在同一平面内,两条直线可能的位置关系是 .

2.在同一平面内,三条直线的交点个数可能是 .

3.下列说法正确的是( )

A.经过一点有且只有一条直线与已知直线平行 B.经过一点有无数条直线与已知直线平行 C.经过一点有一条直线与已知直线平行

D.经过直线外一点有且只有一条直线与已知直线平行

4.若∠?与∠?是同旁内角,且∠?=50°,则∠?的度数是( )

A.50° B.130° C.50°或130° D.不能确定 5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( )

A.1 B.2 C.3 D.4 6.如图,直线AB,CD被DE所截,则∠1和 是同位角,

5

人教版七年级下学期数学教案全册 - 图文

人教版七年级下学期全册教案5.1相交线[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.
推荐度:
点击下载文档文档为doc格式
9odtt1c8w102tjb2irb7
领取福利

微信扫码领取福利

微信扫码分享