等腰三角形典型例题练习
1
.. .. .. ..
等腰三角形典型例题练习
一.选择题(共2小题)
1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为( )
A. 5cm 2cm B.3 cm C. D.不 能确定 2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论: ①AE=BD ②CN=CM ③MN∥AB
其中正确结论的个数是( )
A. 0 2 C. D.3 二.填空题(共1小题)
3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于 _________ .
B.1
三.解答题(共15小题)
4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证
DE=DF.
5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.
参考.资料
.. .. .. ..
6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC是什么三角形?并说明理由.
7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE. (1)∠E等于多少度?
(2)△DBE是什么三角形?为什么?
8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.
9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.
10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,
求证:BD=2CE.
参考.资料
.. .. .. ..
11.(2012?牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下: 如图①,连接AP.
∵PE⊥AB,PF⊥AC,CH⊥AB,
∴S△ABP=AB?PE,S△ACP=AC?PF,S△ABC=AB?CH. 又∵S△ABP+S△ACP=S△ABC, ∴AB?PE+AC?PF=AB?CH.
∵AB=AC, ∴PE+PF=CH.
(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:
(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH= _________ .点P到AB边的距离PE= _________ .
12.数学课上,李老师出示了如下的题目:
“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.
小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论 当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE _________ DB(填“>”,“<”或“=”).
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE _________ DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程) (3)拓展结论,设计新题
参考.资料
.. .. .. ..
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD
的长(请你直接写出结果).
13.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
14.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F. (1)线段AD与BE有什么关系?试证明你的结论. (2)求∠BFD的度数.
15.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF,
求证:AE=CF.
16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.
参考.资料