军队文职数学2模拟题及答案解析11.设k为常数,则极限?x,ylimxy2sin?kx????0,0?x2?y4()A.不存在B.等于12C.等于0D.存在与否与k取值有关【答案】C【解析】令y?kx,则limxy2sin?kx?xk2x2sin?kx?limk3x4k3?x,y?y???0,0?limx?0x?0?kx?x2?y4x2?k4x4x2?k4x4?limx?01?0。故选C。x2?k412.曲面z?x2
?y2
?1在?2,1,4?处的切平面方程()A.4x?2y?z?0B.4x?2y?z?6?0C.z?4?x?2??2?y?1?D.z?4?4?x?2??2?y?1?12.【答案】D【解析】设F?x,y,z??x2?y2?z?1,则Fx??2x,Fy??2y,Fz???1,将点?2,1,4?的坐标代入可得,Fx??2,1,4??4,Fy??2,1,4??2,Fz??2,1,4???1,因此曲面在点?2,1,4?处的切面方程为4?x?2??2?y?1???z?4??0,即z?4?4?x?2??2?y?1?。故选D。?x?1?1t13.直线???2,t为参数,截圆x2?y2?16所得劣弧所对的圆心角是()???y??33?32tA.30°B.45°C.60°D.90°13.【答案】C11军队文职数学2模拟题及答案解析1?2x?1?t2?3?2??1??22
【解析】将?代入x?y?16得,?1?t????33?t??16,整理得??223?????y??33?t??2t2?8t?12?0,所以t1?t2?8,t1t2?12,所截得的弦长为t1?t2??t1?t2?2?4t1t2?4,又圆的半径为4,所以劣弧所对的圆心角为60°。故选C。14.由曲面z?x?2y及z?6?2x?y所围成的立体体积为(A.?B.2?C.3?D.6?14.【答案】D2
2
2
2
)?z?x2?2y222
z【解析】由?消去x?y?2,故D?,得到22
?z?6?2x?y
所求立体体积等于两个曲柱体体积的差??x,y?x
2?0
22
?y2?2,?V????6?x?y?d?????x?2y?d?????6?3?2
2
2
2
D
D
D
2
??d?d???
d??(6?3?2)?d??6?0
故选D。15.计算极限lim
x?0?
1
?1x2?y2dy?()A.1232
B.C.3D.1
12军队文职数学2模拟题及答案解析15.【答案】C【解析】lim
1
11
x?0
?
?1x2?y2dy???1
ydy?2?0
ydy?1。故选D。16.设函数z?z?x,y?由方程F?
?y?x,z?
x??
?0确定,其中F为可微函数,且F2??0,则x
?z?z
?x?y?y=()A.xB.zC.?xD.?z16.【答案】B【解析】方程F?
?y?x,z?x???0两端微分得Fd??y??z?
1???x???F2??d??x??
?0,而d??y?
?x??
??
yx2dx?1dy,d??z?
z1x?x??
??x2dx?xdz
,从而F1???xdy?ydx??F2???xdz?zdx??0,所以dz=
?yF1??zF2??dx?xF1?dyxF,因此2?
?z?yF?x?1??zF2??xF,?z?y??xFxF1???F1?,故x?z?y?z
?z。故选B。2?2?F2??x?y17.设函数P?x,y?,Q?x,y?在单连通区域D内有一阶连续偏导数,L为D内曲线,则曲线积分?
L
Pdx?Qdy与路径无关的充要条件为()A.Pdx?Qdy是某一函数的全微分B.??Pdx?Qdy?0,其中C:x
2
?y2?1在D内C
C.???Q??P?
?dxdyx2???y2?1?
?x?y??0D.?????Q??P??dxdy?D?
?x?y?017.【答案】A13军队文职数学2模拟题及答案解析【解析】在单连通域D中,?Q??x?P
?y??
L
Pdx?Qdy在D内与路径无关???C
Pdx?Qdy?0,其中C为D内任意曲线?Pdx?Qdy为某一函数的全微分。故选A。18.设曲线积分?L??f?x??ex
??sinydx?f?x?cosydy与路径无关,其中f?x?具有一阶连续导数,且f(0)?0
,则f?x?等于()A.e?x?ex
2B.ex?e?x2e?x?exC.2?1
ex?e?xD.2
?1
18.【答案】B【解析】P???f?x??ex??siny,Q??f?x?cosy,积分与路径无关,则?Q?P
?x?
?y,??f?x??ex
??cosy??f??x?cosy,又由f?0??0ex?e?x
,解得f?x??。故选B。即219.微分方程xdy?(y?x2?y2)dx(x?0)满足y(1)?0的特解是()A.x2?y2?y?xB.x2?y2?y?1C.x2?y2?y?xD.x2?y2?y?1
19.【答案】B【解析】将原方程变形为dy?y?1?(y)2ydxxx,这是齐次微分方程,令u?x,则有14军队文职数学2模拟题及答案解析dydx?u?xdududx,代入原方程可得xdx??1?u2,分离变量得du1?u2??dxx,两端积分得ln(u?1?u2)??lnx?C,由y(1)?0可得C?0,进而得出u?1?u2?1
x,再将u?
y2x代入得到x?y2?y?1。故选B。20.微分方程y???4y??4y?x2
?8e2x
的一个特解应具有的形式(其中a,b,c,d为常数)是()A.ax2
?bx?ce
2x
B.ax2?bx?c?dx2e2x
C.ax2
?bx?cxe
2x
D.ax2
?(bx2
?cx)e2x
20【答案】B【解析】对应特征方程为r2
?4r?4?0,特征根是r1,2?2,而f1(x)?x2
,?1?0非特征根,故y1*
?ax2
?bx?c,又f2(x)?8e2x
,?2?2是二重特征根,所以y2*
?dx2e
2x
,y1*?y2*就是特解,故选B。21.设?1,?2,?3,?1,?2
,都是4维列向量,且4阶行列式?1,?2,?3,?1?m,?1,?2,?2,?3?n,则4阶行列式?3,?2,?1,?1??2等于()A.m?nB.??m?n?C.n?mD.m?n21.【答案】C【解析】因为?3,?2,?1,?1??2??3,?2,?1,?1??3,?2,?1,?2
???1,?2,?3,?1??1,?2,?3,?2???1,?2,?3,?1??1,?2,?2,?3?n?m。故选C。22.设A是n阶方阵,且A3
?O,则()15