因为x?1,所以不等式ax?bx?1?a?c?0的解集为1,2?U?5,???. 三、解答题
?3??????sin?x?cosx?????sinxcosx??sinx?sin?x???2217. 解:(1), ??????f?x???tanx?cosxtan?x???cos?x?3????sinx?cosx?sinx sinx?sinx?cosx.
112?1?(2)因为f????,即sin??cos??,所以?sin??cos?????, 33?3?188,则2sin?cos??,即sin2??. 999ab33?18. 解:(1)因为,a?b,所以sinA?sinB, sinAsinB22整理得sin??2sin?cos??cos??222因为A??4,所以sinB?222. ??323(2)因为a?6,所以b?4. 因为b?a,所以B?A,B为锐角, 因为sinB?72. ,所以cosB?3327222?14. ????23236所以sinC?sin?A?B??sinAcosB?cosAsinB?故?ABC的面积为
112?14absinC??6?4??4?214. 22619. 解:(1)由题意得x2?3x?4?0,即?x?4??x?1??0, 解得?4?x?1.
故不等式f?x??0的解集为?4,1.
(2)因为f?x??0的解集为?b,a?,所以a,b为方程x2?3x?m?0的两根,
???a?b??3则?,从而a?0,b?0.
ab?m?0?故
141?14?1?b4a1????????a?b??????5????24?5??3. ab3?ab?3?ab3???
当且仅当2a?b??2时,
14
?取得最大值-3. ab
20. 解:(1)因为bsin?A?C??asinC,所以b2?ac.
a2?c2?b2a2?c2?ac2ac?ac1则cosB????,
2ac2ac2ac2因为0?B??,所以0?B??3.
(2)因为b?因为0?B?17, 2,所以ac?b2?2,则?ABC的面积为acsinB?sinB?24,所以cosB??33. 422222a?c??3ac3a?c??3?23??a?c?b因为cosB?,所以???,解得a?c?3.
2ac2ac42?24故?ABC的周长为a?b?c??a?c??b?3?2. 21. 解:(1)生产此药的月生产成本为22?4x?192x?34?4?(万元), x?3x?392x?3492x?3446x?17x?x?3??x2?43x?17?150%??x?月利润为W?(万元). ??x?3x?3x?3x?3x?3(2)令t?x?3,则x?t?3?t?3?.
?121??x2?43x?17?t2?49t?121???t?故月利润为W????49.
t??x?3t因为t?121?121??2121?22,所以W???t???49??22?49?27,
tt??121,即t?11时,W有最大值27,此时,x?t?3?8. t当且仅当t?故月广告费投入8万元时,药厂月利润最大.
r??r2x,1?,b?2,3sinx?3, 22. 解:(1)因为a???3sin2????rr???2x?3sinx?3?3?sinx?cosx??6sin?x??. 所以f?x??a?b??23sin4?2?因为f?x??3,所以sin?x?????2, ??4?2
解得x?2k??k?Z?或x?2k???2?k?Z?.
??,k?Z?. 2???故x的取值集合为?xx?2k?或x?2k????(2)由(1)可知f?x??3?sinx?cosx?,所以sinx?cosx?msin2x在?0,???上恒成立. 2?因为0?x??2,所以sin2x?0,所以m?sinx?cosx???在?0,?上恒成立.
sin2x?2?设t?sinx?cosx????2sin?x???1,2?,则sin2x?2sinxcosx?t2?1. ?4???所以
m?t1?t2?1t?1.
t1?212. 1因为1?t?2,所以0?t??,所以t?t2t故m的取值范围为??,2??.
?