高等数学A(下册)期末考试试题【A卷】
院(系)别 班级 学
号 姓名 成绩 大题 小题 得分 一 二 1 2 3 4 5 三 四 五 六 七 一、 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)
1、已知向量
、 满足
, ,
,则
.
2、设
,则
.
3、曲面
在点
处的切平面方程为 .
4、设
是周期为 的周期函数,它在
上的表达式为
,则
的傅里叶级数
在
处收敛于 ,在
处收敛于 .
5、设
为连接
与
两点的直线段,则
.
※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.
二、 解下列各题:(本题共5小题,每小题7分,满分35分)
1、求曲线
在点
处的切线及法平面方程.
2、求由曲面 及
所围成的立体体积.
3、判定级数
是否收敛?如果是收敛的,是绝对收敛还是条件收敛?
4、设
,其中
具有二阶连续偏导数,求
.
5、计算曲面积分
其中
是球面
被平面
截出的顶部.
三、 (本题满分9分)
抛物面
被平面
截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.
四、 (本题满分10分)
计算曲线积分
,
其中
为常数,
为由点
至原点
的上半圆周 .
五、 (本题满分10分)
求幂级数
的收敛域及和函数.
六、 (本题满分10分)
计算曲面积分
,
其中
为曲面
的上侧.
七、 (本题满分6分)
设
为连续函数,
,
,其中
是由曲面
与
所围成的闭区域,求
.
-------------------------------------
备注:①考试时间为2小时;