目 录
引言 ······································································································ 1 第一章 概述 ·························································································· 1
1.1设计目的与意义 ············································································ 1 1.2研究的内容 ·················································································· 1 第二章 设计要求 ···················································································· 2
2.1 课程要求 ····················································································· 2 第三章 设计方案 ···················································································· 3
3.1 I/0地址 ····················································································· 3 3.2设备选择 ····················································································· 3 3.3对象和范围的确定 ········································································· 3 3.4电路设计 ····················································································· 3 3.5系统硬件图设计 ············································································ 3 3.6 控制系统的软件设计 ····································································· 3 第四章 加热反应炉控制系统的抗干扰措施 ················································· 4
4.1采用性能优良的电源,抑制电网引入的干扰 ·································· 4 4.2正确选择电缆的和实施敷设 ····························································· 4 4.3 硬件滤波及软件抗干扰措施 ···························································· 4 4.4 正确选择接地点,完善接地系统 ······················································ 4 第五章 总结 ·························································································· 4 参考文献 ································································································ 4
1
引言:加热反应炉的PLC控制,用于实现温度的控制,其炉内的真空度的控制,
与其内部液面高度的控制。
关键词:PLC设计 加热反应炉 监控
第一章.概述
1.1 设计目的与意义
加热反应炉作为工业生产中的重要设备,在以前通常采用工人手工控制的方法进行控制,它作为一项要求精细的工作,常常会由于工人的经验不足以及其他的因素,而常常会造成产品质量不稳定甚至出现次品的问题,而造成原料的浪费,最终会给企业带来经济损失.
而当PLC技术的出现,其所具有的可靠性高、功能强、控制灵活等特点,使成为目前工业现场环境的首选控制装置。使用PLC来控制系统能有效的提高生产的安全性,大大降低了事故的发生率,并能提高生产效率,使原材料的使用率达到最大。而其发展趋势表明从长远来看,用PLC进行控制能大大的节约企业的成本。
1.2研究的内容
本课题主要研究通过可编程控制器对加热反应炉工作过程的控制,通过使用LPC软件,并结合现场的通用I / O 设备(传感器和板卡),对加热反应炉进行进料和排料、进气和排气、加热等自动控制,主要分为三个阶段送料控制,加热反应控制和泄放控制.
1
第二章.设计要求
2.1 课程要求
本次设计任务是设计一个PLC控制的加热反应炉。 控制要求
第一阶段:送料控制
1、检测下液面SQ2、炉内温度ST、炉内压力SP是否都小于给定值(整定值均为逻辑量)。
2、若小于给定值,则开启排气阀YV1和进料阀YV2。 3、当液位上升到SQ1时,应该关闭排气阀和进料阀。 4、延时20S,开启氮气阀YV3,氮气进入炉内,炉内压力上升。 5、当压力上升到给定值,即SP=“1”时,关闭氮气阀。 第二阶段:加热反应控制。
1、交流接触器KM带电,接通加热炉加热器发热器EH的电源。 2、当温度升高到给定值时(ST=“1”),切断加热器电源。交流接触器KM失电。
3、延时10min加热过程结束。 第三阶段:泄放控制。
1、打开排气阀,使炉内压力降到预定的最低值(SP:“0”)。 2、打开泄放阀,当炉内液面下降到到下液面(SQ2=“0”)时,关闭泄放阀和排气阀。系统恢复到初始状态, 准备进入下一个循环。
2
图2.1加热反应炉结构示意图(一)
2
第三章.设计方案
3.1.I/0地址
I0.0:启动开关 Q0.0:PLC运行指示 I输入 输出
0.1:停止开关 Q0.1:排气阀QVl I0.2:上液面传感器SQl Q0.2:进料阀QV2 I0.3:下液面传感器SQ2 Q0.3:氮气阀QV3 I0.4:压力传感器SP Q0.4:泄放阀QV4
I0.5:温度传感器ST Q0.5:控制加热装置EH的接触器KM
I/O地址分配: 根据控制要求可知,该系统需要6个输入点和5个输出点,其地址分配如下:表3.1I/O地址分配 IN 输入点编号 OUT 输出点编号 启动开关 00000 PLC指示灯 01000 停止开关 00001 排气阀YV1 01001 上液面SQ1 00002 进料阀YV2 01002 下液面SQ2 00003 氮气阀YV3 01003 压力SP 00004 泄放阀YV4 01004 温度ST 00005 加热器 01005 3.2.设备选择
首先,选择机型。目前PLC产品种类繁多,同一个公司生产出来的PLC也常常推出系列产品,这需要用户去选择最适合自己要求的产品。正确选择产品中,首要的是选定机型。
只有选好机型,我们才能成功的做出产品,其选择方法有两种: 1. 根据系统类型选择机型。
从选机型的角度看,控制系统可以分成单体控制小系统、慢过程大系统和快速控制大系统。这些系统在PLC的选择上是有区别的。
1)单体控制的小系统:这种系统一般使用一台PLC就能完成控制要求,控制对象常常是一台设备或多台设备中的一个功能。这种系统对PLC间的通信问题要求不高,甚至没有要求。但有时功能要求全面,容量要求变化大,有些还要与设备系统的其他机器连接。
2)慢过程大系统:对运行速度要求不高,但设备间有连锁关系,设备距离远,控制动作多,如大型料场、高炉、码头、大型车站信号控制;也有的设备本身对运行速度要求不高,如大型连续轧钢厂、冷连续轧钢厂中的辅助生产机组和共有系统、供风系统等。对这一类型对象,一般不选用大型机,因为它编程调试都不方便,一
3