好文档 - 专业文书写作范文服务资料分享网站

第一类切比雪夫多项式

天下 分享 时间: 加入收藏 我要投稿 点赞

第一类切比雪夫多项式

第一种的切比雪夫多项式是一组正交多项式定义解决方案切比雪夫微分方程和表示也密切相关多角度的公式。第一类切比雪夫多项式表示

,2,…5。 第一种的切比雪夫多项式

可以定义的围道积分

。他们是作为一个近似最小二乘适合,的一个特例盖根堡多项式与

。最初几个多项式上面

。他们用三角

和实现Wolfram语言作为ChebyshevT[n x]。归一化,这样

(1)

轮廓包含原点和遍历在逆时针方向(Arfken 1985,p . 1985)。 最初几个第一类切比雪夫多项式

(2) (3) (4)

(5) (6)

(7) (8)

命令从最小到最大的权力时,三角形的非零系数是1;1;,2;4,18;5、16岁……(OEISA008310).

一个美丽的情节可以通过策划

径向,增加每个值的半径,并填写曲线之间的区域(Trott 1999,pp。10和84年)。

切比雪夫多项式的第一种定义的身份

(9)

切比雪夫多项式的第一种可以获得的生成函数

(10)

(11)

为和(分为et al . 1972,15项)。(密切相关生成函数的定义的基础吗第二类切比雪夫多项式.)

一种是直接表示

中定义的多项式也可以总结

在哪里是一个二项式系数和是层功能,或产品

(Zwillinger 1995,p . 1995)。 也满足好奇行列式方程

(1986年纳什)。

第一种的切比雪夫多项式的一个特例雅可比多项式与 ,

在哪里是一个超几何函数(Koekoek和Swarttouw 1998)。

0时

为2……。极值出现的

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

在哪里。在最大,,至少, .

切比雪夫多项式是正交多项式关于权重函数

在哪里是克罗内克符号。第一类切比雪夫多项式满足额外的离散的身份

在哪里为 , ...,是0的 .

他们也满足递归关系

为,以及

(沃特金斯和蔡Rivlin 1993;1990年,p . 5)。 他们有一个复杂的积分表示

和一个罗德里格斯表示

使用一个快速斐波那契变换与乘法法律

给了

使用gram - schmidt正规化的范围(,1)权重函数给了

(24)

(25)

(26) (27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

等等这样正常化给出了第一类切比雪夫多项式。

第一种是切比雪夫多项式的相关第一类贝塞尔函数和修改后的第一类贝塞尔函??的关系

让允许将第一类切比雪夫多项式写成

第二次转换后的微分方程线性相关的解决方案

然后由

也可以写吗

在哪里是一个第二类切比雪夫多项式。请注意,

因此不是一个多项式.

的三角形角度是由

, , , ,,……(OEISA054375).

的多项式

的程度,前几

是多项式的程度而保持接近在这一期间。最大偏差在点,

为1……(分为et al . 1972年)。

(41)

(42)

(43) (44)

(45)

(46) (47)

(48)

(49)

(50) (51)

(52)

(53)

(54)

(55)

参见: 盖根堡多项式

Gegenbauer多项式的解决方案是Gegenbauer微分方程为整数。他们是相关联的概括勒让德多项式来- d空间,是成正比的(或者根据正常化,等于)特种球多

项式 .

Szego之后,在这个工作中,Gegenbauer多项式给出的雅可比多项式与通过

(Szego 1975,p . 80),从而使它们相当于Gegenbauer多项式的实现Wolfram语言作为GegenbauerC(n,λ,x)。这些多项式给出的生成函数

最初几个Gegenbauer多项式

的超几何函数,

他们规范化

为 .

导数的身份包括

(Szego 1975,页80 - 83)。 一个递归关系是

(1)

(2)

(3)

(4) (5)

(6)

(7)

(8)

(9)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(10)

第一类切比雪夫多项式

第一类切比雪夫多项式第一种的切比雪夫多项式是一组正交多项式定义解决方案切比雪夫微分方程和表示也密切相关多角度的公式。第一类切比雪夫多项式表示,2,…5。第一种的切比雪夫多项式可以定义的围道积分。他们是作为一个近似最小二乘适合,的一个特例盖根堡多项式与。最初几个多项式上面。他
推荐度:
点击下载文档文档为doc格式
9l7f16k9873z01w0bcmc
领取福利

微信扫码领取福利

微信扫码分享