提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例如:
0.92×1.41+0.92×8.59 =0.92×(1.41+8.59) =9.2
“借来借去”法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意,有借有还,再借不难。
考试中,看见类似998、999或者1.98等接近一个整数的数时,往往使用“借来借去”法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4 =11106
拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例如: 3.2×12.5×25 =8×0.4×12.5×25 =8×12.5×0.4×25 =1000
加法结合律
注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33) =30
“共用”法
这种方法要灵活掌握拆分法和乘法分配律,看到99、101、9.8等接近一个整数的数的时候,要首先考虑拆分。
例如: 34×9.9 =34×(10-0.1) =34×10-34×0.1 =336.6
基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例如:
2072+2052+2062+2042+2083 =(2062x5)+10-10-20+21 =10310+1 =10311
公式法
(1) 加法
交换律:a+b=b+a,
结合律:(a+b)+c=a+(b+c)。
(2) 减法
a-(b+c)=a-b-c, a-(b-c)=a-b+c, a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a。
(3)乘法
交换律:a×b=b×a,
结合律:(a×b)×c=a×(b×c),
分配率:(a+b)xc=ac+bc;(a-b)×c=ac-bc。
(4) 除法
a÷(b×c)=a÷b÷c, a÷(b÷c)=a÷bxc, a÷b÷c=a÷c÷b, (a+b)÷c=a÷c+b÷c, (a-b)÷c=a÷c-b÷c。
裂项法