好文档 - 专业文书写作范文服务资料分享网站

等腰三角形典型例题练习(含答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.

考点: 分析: 全等三角形的判定与性质;等腰直角三角形. 可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,当然相等了,由此可以证明△AEO≌△BFO;延长BF交AE于D,交OA于C,可证明∠BDA=∠AOB=90°,则AE⊥BF. 解:AE与BF相等且垂直, 理由:在△AEO与△BFO中, ∵Rt△OAB与Rt△OEF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°﹣∠BOE=∠BOF, ∴△AEO≌△BFO,∴AE=BF. 延长BF交AE于D,交OA于C,则∠ACD=∠BCO, 由(1)知∠OAE=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF. 解答: 17.(2006?郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.

(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明; (2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.

考点: 分析: 等腰三角形的性质. (1)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明; (2)类似(1)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC的面积=三角形ABD的面积﹣三角形ACD的面积. 16

解答: 解:(1)DE+DF=CG. 证明:连接AD, 则S△ABC=S△ABD+S△ACD,即AB?CG=AB?DE+AC?DF,∵AB=AC,∴CG=DE+DF. (2)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG. 理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB?DE=AB?CG+AC?DF ∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG. 同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上. 18.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.

考点: 分析: 等腰三角形的性质;三角形的面积. 猜想:PD、PE、CF之间的关系为PD=PE+CF.根据∵S△PAB=AB?PD,S△PAC=AC?PE,S△CAB=AB?CF,S△PAC=AC?PE,AB?PD=AB?CF+AC?PE,即可求证. 解答: 解:我的猜想是:PD、PE、CF之间的关系为PD=PE+CF.理由如下: 连接AP,则S△PAC+S△CAB=S△PAB, 17

∵S△PAB=AB?PD,S△PAC=AC?PE,S△CAB=AB?CF, 又∵AB=AC,∴S△PAC=AB?PE,∴AB?PD=AB?CF+AB?PE, 即AB(PE+CF)=AB?PD,∴PD=PE+CF.

18

等腰三角形典型例题练习(含答案)

16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.考点:分析:全等三角形的判定与性质;等腰直角三角形.可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=B
推荐度:
点击下载文档文档为doc格式
9k8ib4s5g9371qz5cnl7
领取福利

微信扫码领取福利

微信扫码分享