⑧
由图可知OP=2a+R,因此水平荧光屏发亮范围的右边界的坐标
⑨
四、带电粒子在有界磁场中的极值问题
寻找产生极值的条件:①直径是圆的最大弦;②同一圆中大弦对应大的圆心角;③由轨迹确定半径的极值。
有一粒子源置于一平面直角坐标原点O处,如图所示相同的速率v0向第一象限平面内的不同方向发射电子,已知电子质量为m,电量为e。欲使这些电子穿过垂直于纸面、磁感应强度为B的匀强磁场后,都能平行于x轴沿+x方向运动,求该磁场方向和磁场区域的最小面积s。
解析:由于电子在磁场中作匀速圆周运动的半径R=mv0/Be是确定的,设磁场区域足够大,作出电子可能的运动轨道如图所示,因为电子只能向第一象限平面内发射,所以电子运动的最上面一条轨迹必为圆O1,它就是磁场的上边界。其它各圆轨迹的圆心所连成的线必为以点O为圆心,以R为半径的圆弧O1O2On。由于要求所有电子均平行于x轴向右飞出磁场,故由几何知识有电子的飞出点必为每条可能轨迹的最高点。如对图中任一轨迹圆O2而言,要使电子能平行于x轴向右飞出磁场,过O2作弦的垂线O2A,则电子必将从点A飞出,相当于将此轨迹的圆心O2沿y方向平移了半径R即为此电子的出场位置。由此可见我们将轨迹的圆心组成的圆弧O1O2On沿y方向向上平移了半径R后所在的位置即为磁场的下边界,图中圆弧OAP示。综上所述,要求的磁场的最小区域为弧OAP与弧OBP所围。利用正方形OO1PC的面积减去扇形OO1P的面积即为OBPC的面积;即R-πR/4。根据几何关系有最小磁场区域的面积为S=2(R-πR/4)=(π/2 -1)(mv0/Be)
2
2
2
2
2
。
五、带电粒子在复合场中运动问题
复合场包括:磁场和电场,磁场和重力场,或重力场、电场和磁场。有带电粒子的平衡问题,匀变速运动问题,非匀变速运动问题,在解题过程中始终抓住洛伦兹力不做功这一特点。粒子动能的变化是电场力或重力做功的结果。
(07四川)如图所示,在坐标系Oxy的第一象限中存在沿y轴正方形的匀强电场,场强大小为E。在其它象限中存在匀强磁场,磁场方向垂直于纸面向里。A是y轴上的一点,它到座标原点O的距离为h;C是x轴上的一点,到O点的距离为l,一质量为m、电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入大磁场区域,并再次通过A点。此时速度方向与y轴正方向成锐角。不计重力作用。试求:
(1)粒子经过C点时速度的大小合方向;
(2)磁感应强度的大小B。
解析:(1)以a表示粒子在电场作用下的加速度,有
加速度沿y轴负方向。设粒子从A点进入电场时的初速度为v0,由A点运动到C点
①
经历的时间为t,则有
③
②
由②③式得 ④
设粒子从点进入磁场时的速度为v,v垂直于x轴的分量 v1=
由①④⑤式得
⑤
v1=
= ⑥
设粒子经过C点时的速度方向与x轴的夹角为α,则有
tanα=
⑦
由④⑤⑦式得 ⑧
(2)粒子经过C点进入磁场后在磁场中作速率为v的圆周运动。若圆周的半径为R,则有
⑨
设圆心为P,则PC必与过C点的速度垂且有夹角,由几何关系得
=
=R。用β表示
与y轴的
⑩
由⑧⑩⑾式解得
⑾
R=
由⑥⑨⑿式得
⑿
B=
⒀
六、带电粒子在磁场中的周期性和多解问题
多解形成原因:带电粒子的电性不确定形成多解;磁场方向不确定形成多解;临界状态的不唯一形成多解,在有界磁场中运动时表现出来多解,运动的重复性形成多解,在半径为r的圆筒中有沿筒轴线方向的匀强磁场,磁感应强度为B;一质量为m带电+q的粒子以速度V从筒壁A处沿半径方向垂直于磁场射入筒中;若它在筒中只受洛伦兹力作用且与筒壁发生弹性碰撞,欲使粒子与筒壁连续相碰撞并绕筒壁一周后仍从A处射出;则B必须满足什么条件?
带电粒子在磁场中的运动时间分析:由于粒子从A处沿半径射入磁场后必作匀速圆周运动,要使粒子又从A处沿半径方向射向磁场,且粒子与筒壁的碰撞次数未知,故设粒子与筒壁的碰撞次数为n(不含返回A处并从A处射出的一次),由图可知
其中n为大于或等于2的整数(当n=1时即粒子必沿圆O的直径
作直线运动,表示此时B=0);由图知粒子圆周运动的半径R,
再由粒子在磁场中的运动半径
可求出。
粒子在磁场中的运动周期为,粒子每碰撞一次在磁场中转过的角度由图
得,粒子从A射入磁场再从A沿半径射出磁场的过程中将经过n+1
段圆弧,故粒子运动的总时间为:,将前面B代入T后与共同代入前
式得。 练习
1.一质量为m,电量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它运动的平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是( )
A.
B. C. D.
2.(07宁夏)在半径为R的半圆形区域中有一匀强磁磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)。
?如果粒子恰好从A点射出磁场,求入射粒子的速度。
?如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。求入射粒子的速度。