第7讲 比较大小
一.选择题(共30小题)
1.(2024秋?黄山期末)设a?2?0.3,b?log50.2,c?log67,则( ) A.a?b?c B.c?b?a C.a?c?b D.c?a?b
【解析】解:
b?log?0.350.2?0?a?2?1?c?log67.
?c?a?b.
故选:D.
2.(2024秋?肇庆期末)已知a?5?12,b?log125,c?log12,则这三个数的大小顺序为( )
5A.a?b?c B.a?c?b C.c?b?a D.c?a?b
【解析】解:
a?5?12?55?0,b?log125??log25??2,c?log12??log52??1, 5且?log52?0,故a?c?b, 故选:B.
3.(2024秋?朝阳区期末)已知a?0.5,b?0.50.6,c?log0.60.5,则( ) A.a?b?c
B.b?a?c
C.c?a?b
D.c?b?a
【解析】解:根据y?0.5x在R上单调递减得0.5?0.51?0.50.6?0.50?1, 根据y?log0.6x在(0,??)上单调递减得log0.60.5?log0.60.6?1, 所以a?b?c. 故选:A.
4.(2024秋?九江期末)已知a?21.2,b?log41.2,c?log21.2,则a,b,c的大小关系为( A.a?b?c
B.c?a?b
C.c?b?a
D.b?c?a
【解析】解:21.2?20?1,log41.2?log41.44?log21.2?log22?1,
?b?c?a.
故选:D.
5.(2024秋?太原期末)已知a?log30.5,b?log0.30.5,c?log0.40.5,则a,b,c的大小关系为(A.a?b?c
B.a?c?b C.b?c?a
D.c?a?b
) ) 【解析】解:画出函数y?log3x,y?log0.3x,y?log0.4x的图象,如图所示:
,
从图象可知:a?b?c, 故选:A.
6.(2024秋?济南期末)已知f(x)?|lnx|,若a?f(115),b?f(4),c?f(3),则( A.a?b?c
B.b?c?a
C.c?a?b
D.c?b?a
【解析】解:a?f(15)?|ln15|?ln5,b?f(14)?|ln14|?ln4,c?f(3)?|ln3|?ln3,
函数y?lnx在(0,??)上单调递增,且3?4?5, ?ln3?ln4?ln5,
即c?b?a, 故选:D.
7.(2024秋?越秀区期末)设a?log30.6,b?log0.30.6,则( ) A.ab?a?b?0
B.a?b?0?ab
C.ab?0?a?b
D.a?b?ab?0【解析】解:log30.6?log31?0,?a?0, log0.30.6?log0.31?0,?b?0, ?ab?0,
a?bab?1a?1b?1log0.6?1log?log0.63?log0.60.3?log0.60.9, 30.30.6又0?log0.61?log0.60.9?log0.60.6?1,
?0?a?bab?1,
)
?ab?a?b?0,
故选:A.
18.(2024?五模拟)已知a?log0.165,b?6,c?log562,则a,b,c的大小关系为( ) A.b?a?c
B.c?a?b
C.b?c?a
D.c?b?a
1【解析】解:由题意可知0?a?log?log0.1606566?1,b?6??1,12?c?log562?log55?1,
11556?65,?(56)6?(65)6,即5?66,
5?a?log6565?log66?6, 1362?53,?62?54, 13?c?log3562?log554?4, ?a?c,
?b?a?c,
故选:A.
9.(2024秋?和平区校级期末)已知a?log0.22,b?30.3,c?log32,则( ) A.a?b?c
B.a?c?b
C.c?a?b
D.b?c?a
【解析】解:log0.22?log0.21?0,?a?0, 30.3?30?1,?b?1,
log31?log32?log33?1,?0?c?1, ?a?c?b,
故选:B.
10.(2024秋?辽源期末)已知a?log911132,b?(4)3,c?log1,则a,b,c的大小关系为( 36A.a?b?c B.b?a?c C.c?b?a D.c?a?b
【解析】解:1?log9111132?log36?log1,()3?()0?1,
3644?c?a?b.
故选:D.
11.(2024秋?东城区期末)已知a?log23,b?log45,c?log87,则( )
)