有3种选择;第三类:m=3时,使m>n,n有2种选择;第四类:m=2时,使m>n,n有1种选择.故符合条件的椭圆共有10个.故选A.
(2)根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.
由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个). 【答案】 (1)A (2)36
【迁移探究1】 (变条件)在本例(1)中,若m∈{1,2,…,k},n∈{1,2,…,k}(k∈N*),其他条件不变,这样的椭圆有多少个?
解:因为m>n.
当m=k时,n=1,2,…,k-1. 当m=k-1时,n=1,2,…,k-2. …
当m=3时,n=1,2. 当m=2时,n=1.
k(k-1)所以共有1+2+…+(k-1)=(个).
2
【迁移探究2】 (变条件)若本例(2)条件变为“个位数字不小于十位数字”,则这样的两位数的个数是多少?
解:分两类:一类:个位数字大于十位数字的两位数,由本例(2)知共有36个;另一类:个位数字与十位数字相同的有11,22,33,44,55,66,77,88,99,共9个.由分类加法计数原理知,共有36+9=45(个).
分类加法计数原理的两个条件
(1)根据问题的特点能确定一个适合它的分类标准,然后在这个标准下进行分类. (2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.
1.如图,从A到O有________种不同的走法(不重复过一点).
解析:分3类:第一类,直接由A到O,有1种走法;
第二类,中间过一个点,有A→B→O和A→C→O 2种不同的走法; 第三类,中间过两个点,有A→B→C→O和A→C→B→O 2种不同的走法. 由分类加法计数原理可得共有1+2+2=5(种)不同的走法. 答案:5
2.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.
解析:若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).
所以所有凸数共有2+6+12+20+30+42+56+72=240(个). 答案:240
考点二 分步乘法计数原理(基础型)
复习指导| 通过实例,了解分步乘法计数原理及其意义. 核心素养:数学建模
(1)将4封不同的信投入3个信箱,不
同的投法种数为( )
A.96 C.64
B.81 D.24
(2)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24 C.12
B.18 D.9
(3)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.
【解析】 (1)每封信都有3种不同的投法,由分步乘法计数原理可得,4封信共有3×3×3×3=34=81种不同的投法.故选B.
(2)由题意可知E→F共有6种走法,F→G共有3种走法,由分步乘法计数原理知,共有6×3=18种走法,故选B.
(3)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).
【答案】 (1)B (2)B (3)120
【迁移探究1】 (变条件)若本例(3)中将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?
解:每人都可以从这三个智力项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).
【迁移探究2】 (变条件)若将本例(3)条件中的“每人至多参加一项”改为“每人参加的项目数不限”,其他不变,则有多少种不同的报名方法?
解:每人参加的项目数不限,因此每一个项目都可以从六人中任选一人,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).
利用分步乘法计数原理解题的策略
(1)要按事件发生的过程合理分步,即分步是有先后顺序的.
(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原