好文档 - 专业文书写作范文服务资料分享网站

小学奥数知识点梳理【完整版】

天下 分享 时间: 加入收藏 我要投稿 点赞

学而思小学奥数知识点梳理

学而思教材编写组 侍春雷

前言

小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。 概述

一、 计算

1. 四则混合运算繁分数

⑴ 运算顺序

⑵ 分数、小数混合运算技巧

一般而言:

① 加减运算中,能化成有限小数的统一以小数形式; ② 乘除运算中,统一以分数形式。 ⑶带分数与假分数的互化 ⑷繁分数的化简 2. 简便计算

⑴凑整思想 ⑵基准数思想 ⑶裂项与拆分 ⑷提取公因数 ⑸商不变性质 ⑹改变运算顺序

① 运算定律的综合运用 ② 连减的性质 ③ 连除的性质

④ 同级运算移项的性质 ⑤ 增减括号的性质 ⑥ 变式提取公因数

形如:a1?b?a2?b?......?an?b?(a1?a2?......?an)?b

3. 估算

求某式的整数部分:扩缩法 4. 比较大小

① 通分

a. 通分母

1 / 9

b. 通分子 ② 跟“中介”比 ③ 利用倒数性质

mnmmnn111??,则c>b>a.。形如:1?2?3,则1?2?3。

n1n2n3m1m2m3abc5. 定义新运算

6. 特殊数列求和

运用相关公式:

n?n?1? 2n?n?1??2n?1?222②1?2???n?

6①1?2?3?n?③an?n?n?1??n?n

2④1?2???n??1?2??n?3332n2?n?1??

42⑤abcabc?abc?1001?abc?7?11?13 ⑥a?b??a?b??a?b?

22⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n

2二、 数论

1. 奇偶性问题

奇?奇=偶 奇×奇=奇 奇?偶=奇 奇×偶=偶 偶?偶=偶 偶×偶=偶

2. 位值原则

形如:abc=100a+10b+c

3. 数的整除特征: 整除数 特 征 2 末尾是0、2、4、6、8 3 各数位上数字的和是3的倍数 5 末尾是0或5 9 各数位上数字的和是9的倍数 11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数 4和25 末两位数是4(或25)的倍数 8和125 末三位数是8(或125)的倍数 7、11、13 末三位数与前几位数的差是7(或11或13)的倍数 4. 整除性质

① 如果c|a、c|b,那么c|(a?b)。 ② 如果bc|a,那么b|a,c|a。

2 / 9

③ 如果b|a,c|a,且(b,c)=1,那么bc|a。 ④ 如果c|b,b|a,那么c|a.

⑤ a个连续自然数中必恰有一个数能被a整除。

5. 带余除法

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r 6. 唯一分解定理

任何一个大于1的自然数n都可以写成质数的连乘积,即

n= p1a1× p2a2×...×pkak

7. 约数个数与约数和定理

设自然数n的质因子分解式如n= p1a1× p2n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)

n的所有约数和:(1+P1+P1+…p1a1)(1+P2+P2+…p2

22a2a2×...×pk

ak那么:

)…(1+Pk+Pk+…pk

2ak)

8. 同余定理

① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于

模m同余,用式子表示为a≡b(mod m)

②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

③两数的和除以m的余数等于这两个数分别除以m的余数和。 ④两数的差除以m的余数等于这两个数分别除以m的余数差。 ⑤两数的积除以m的余数等于这两个数分别除以m的余数积。

9.完全平方数性质

①平方差: A-B=(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。

②约数:约数个数为奇数个的是完全平方数。 约数个数为3的是质数的平方。

③质因数分解:把数字分解,使他满足积是平方数。 ④平方和。

10.孙子定理(中国剩余定理) 11.辗转相除法

12.数论解题的常用方法:

枚举、归纳、反证、构造、配对、估计

22三、 几何图形

1. 平面图形

⑴多边形的内角和

N边形的内角和=(N-2)×180°

3 / 9

⑵等积变形(位移、割补)

① 三角形内等底等高的三角形 ② 平行线内等底等高的三角形 ③ 公共部分的传递性 ④ 极值原理(变与不变)

⑶三角形面积与底的正比关系

S1︰S2 =a︰b ; S1︰S2=S4︰S3 或者S1×S3=S2×S4 ⑷相似三角形性质(份数、比例)

abch??? ; S1︰S2=a2︰A2 ABCH

2

②S1︰S3︰S2︰S4= a︰b2︰ab︰ab ; S=(a+b)2 ⑸燕尾定理

A FDG CBE S△ABG:S△AGC=S△BGE:S△GEC=BE:EC; S△BGA:S△BGC=S△AGF:S△GFC=AF:FC; S△AGC:S△BCG=S△ADG:S△DGB=AD:DB; ⑹差不变原理 知5-2=3,则圆点比方点多3。 4 / 9

⑺隐含条件的等价代换

例如弦图中长短边长的关系。 ⑻组合图形的思考方法

① 化整为零 ② 先补后去 ③ 正反结合

2. 立体图形

⑴规则立体图形的表面积和体积公式 ⑵不规则立体图形的表面积

整体观照法 ⑶体积的等积变形

①水中浸放物体:V升水=V物 ②测啤酒瓶容积:V=V空气+V水

⑷三视图与展开图

最短线路与展开图形状问题

⑸染色问题

几面染色的块数与“芯”、棱长、顶点、面数的关系。

四、 典型应用题

1. 植树问题

①开放型与封闭型 ②间隔与株数的关系

2. 方阵问题

外层边长数-2=内层边长数

(外层边长数-1)×4=外周长数 外层边长数2-中空边长数2=实面积数

3. 列车过桥问题

①车长+桥长=速度×时间

②车长甲+车长乙=速度和×相遇时间 ③车长甲+车长乙=速度差×追及时间

列车与人或骑车人或另一列车上的司机的相遇及追及问题 车长=速度和×相遇时间 车长=速度差×追及时间

4. 年龄问题

差不变原理 5. 鸡兔同笼

假设法的解题思想 6. 牛吃草问题

原有草量=(牛吃速度-草长速度)×时间 7. 平均数问题 8. 盈亏问题

5 / 9

小学奥数知识点梳理【完整版】

学而思小学奥数知识点梳理学而思教材编写组侍春雷前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指
推荐度:
点击下载文档文档为doc格式
9izrf1r5l17yogl1itk20zdc523y3q00i2r
领取福利

微信扫码领取福利

微信扫码分享