北京曲一线图书策划有限公司 2021版《5年高考3年模拟》A版
12.2 古典概型 探考情 悟真题 【考情探究】
考点
古典概型
内容解读
理解古典概型,会计算古典概型中事件的概率.
5年考情
考题示例
2015浙江自选,04(2),5分
考向
古典概型
关联考点
预测热度
★★★
分析解读 1.古典概型的概率求法是高考常考内容,是高考的命题热点.
2.考查古典概型的概率的计算是本节最为常见的考查内容,往往与排列、组合相结合,并体现对分类讨论思想的考查. 3.预计2021年高考试题中,对古典概型的考查的可能性很大.
破考点 练考向 【考点集训】
考点 古典概型
1.(2019浙江9+1联盟期中,15)将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则使a×b×c+d×e×f是偶数的排列出现的概率是 . 答案
9
10
2.(2019浙江高考信息卷(二),16)某人做摸球游戏,袋中装有大小形状和质地均完全相同的6个小球,其中3个红球,2个黄球,1个蓝球.摸球规则如下:每次摸2个球,摸到一个红球得1分,摸到一个黄球得2分,摸到一个蓝球得3分,则此人摸一次恰好得4分的概率是 ;设此人摸一次得分为X分,则X的数学期望是 . 答案
410; 153
炼技法 提能力 【方法集训】
方法 古典概型概率的计算方法
1.(2019浙江诸暨牌头中学期中,13)用0,1,2,3,4,5这六个数字组成的没有重复数字的五位数,从中随机取一个数,则这个数恰好能被5整除的概率是 . 答案
9 25
1 / 8
北京曲一线图书策划有限公司 2021版《5年高考3年模拟》A版
2.(2018浙江镇海中学阶段性测试,13)甲、乙等五名工人被随机地分到A,B,C三个不同的岗位工作,每个岗位至少有一名工人,则甲、乙被同时安排在A岗位的概率为 . 答案
225
【五年高考】
A组 自主命题·浙江卷题组
考点 古典概型
(2015浙江自选,“计数原理与概率”模块,04(2),5分)设袋中共有7个球,其中4个红球,3个白球.从袋中随机取出3个球,求取出的白球比红球多的概率.
3
解析 从袋中取出3个球,总的取法有C7=35种;
321其中白球比红球多的取法有C3+C3·C4=13种.
因此取出的白球比红球多的概率为.
13
35
B组 统一命题、省(区、市)卷题组
考点 古典概型
1.(2019课标全国Ⅱ文,4,5分)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A. B. C. D. 答案 B
2.(2019课标全国Ⅲ文,3,5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A. B. C. D. 答案 D
3.(2018课标全国Ⅱ,5,5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( ) A.0.6 B.0.5 C.0.4 D.0.3 答案 D
1614131223
35
25
15
1 / 8
北京曲一线图书策划有限公司 2021版《5年高考3年模拟》A版
4.(2017课标全国Ⅱ文,11,5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A. B. C. D. 答案 D
5.(2016课标全国Ⅰ,3,5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A. B. C. D. 答案 C
6.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 答案
7 1013
12
23
56
11015310257.(2019上海,10,5分)某三位数密码,每位数字可在0—9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是 . 答案
27 100
8.(2019天津文,15,13分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况. (1)应从老、中、青员工中分别抽取多少人?
(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访. (i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
1 / 8
北京曲一线图书策划有限公司 2021版《5年高考3年模拟》A版
项目 员工 子女教育 继续教育 大病医疗 住房贷款利息 住房租金 赡养老人
○ × × ○ × ○
○ × × ○ × ○
× ○ × × ○ ×
○ × ○ × × ×
× ○ × ○ × ×
○ ○ × ○ × ○
A
B
C
D
E
F
解析 本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力,体现了数学运算素养.
(1)由已知,老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.
(2)(i)从已知的6人中随机抽取2人的所有可能结果为
{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.
(ii)由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种. 所以,事件M发生的概率P(M)=.
思路分析 (1)首先得出抽样比,从而按比例抽取各层的人数;(2)(i)利用列举法列出满足题意的基本事件;(ii)利用古典概型公式求概率.
失分警示 在列举基本事件时应找好标准,做到不重不漏.
11
15
C组 教师专用题组
考点 古典概型
1.(2018课标全国Ⅲ,5,5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 答案 B
2.(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 ( )
1 / 8
北京曲一线图书策划有限公司 2021版《5年高考3年模拟》A版
A. B. C. D. 答案 C
3.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是( )
A. B. C. D. 答案 C
4.(2017天津文,3,5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A. B. C. D. 答案 C
5.(2016课标全国Ⅲ,5,5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A. B. C. D. 答案 C
6.(2016北京,6,5分)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A. B. C. D. 答案 B
7.(2015课标Ⅰ,4,5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A. B. C. D. 答案 C
8.(2015广东,4,5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )
310
15
110
120
15
25
825
925
815
18
115
130
45352515518495979112
114
115
118
1 / 8