学高中数学数列放缩专题用放缩法处理数列和不等问题
数列和不等问题(教师版)
一.先求和后放缩(主要是先裂项求和,再放缩处理)
例1.正数数列?an?的前n项的和Sn,满足2Sn?an?1,试求: (1)数列?an?的通项公式; (2)设bn?11,数列?bn?的前n项的和为Bn,求证:Bn? anan?1222?2an?an解:(1)由已知得4Sn?(an?1)2,n?2时,4Sn?1?(an?1?1)2,作差得:4an?an?1?2an?1,所以
(an?an?1)(an?an?1?2)?0,又因为?an?为正数数列,所以an?an?1?2,即?an?是公差为2的等差数列,
由2S1?a1?1,得a1?1,所以an?2n?1 (2)bn?11111??(?),所以
anan?1(2n?1)(2n?1)22n?12n?1Bn?111111111(1?????)??? 23352n?12n?122(2n?1)2412an??2n?1?,n?1,2,3,3333i真题演练1:(06全国1卷理科22题)设数列?an?的前n项的和,Sn?
2n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn?,n?1,2,3,Sn,证明:
?T?2.
i?1n1n+1242
解: (Ⅰ)由 Sn=\f(4,3)an-×2+, n=1,2,3,… , ① 得 a1=S1= a1-\f(1,3)×4+ 所以
3333
a1=2
再由①有 Sn-1=错误!an-1-错误!×2+错误!, n=2,3,4,…
将①和②相减得: an=Sn-Sn-1= 错误!(an-an-1)-错误!×(2n+1-2n),n=2,3, …
整理得: an+2=4(an-1+2),n=2,3, … , 因而数列{ an+2}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n-1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …,
(Ⅱ)将an=4n-2n代入①得 Sn= 错误!×(4n-2n)-错误!×2n+1 + 错误! = 错误!×(2n+1-1)(2n+1-2) 2n+1n
= ×(2-1)(2-1)
3
31
Tn= \f(2n,Sn) = ×\f(2n, (2n+1-1)(2n-1)) = \f(3,2)×(n - 错误!)
22-1所以,
二.先放缩再求和
1.放缩后成等比数列,再求和
n
n-1
n
n
?Ti= 错误!?(错误! - 错误!) = 错误!×(错误! -
i?1i?1nn12n?1?1) < 错误!
学高中数学数列放缩专题用放缩法处理数列和不等问题
1例2.等比数列?an?中,a1??,前n项的和为Sn,且S7,S9,S8成等差数列.
2a1设bn?n,数列?bn?前n项的和为Tn,证明:Tn?.
31?an解:∵A9?A7?a8?a9,A8?A9??a9,a8?a9??a9,∴公比q?a91??. a822∴an?(?)n. bn?1214n11?(?)n2?11. ?4n?(?2)n3?2n(利用等比数列前n项和的模拟公式Sn?Aqn?A猜想)
11(1?2)111122?1(1?1)?1. ∴Bn?b1?b2??bn???????13?23?22333?2n32n1?2真题演练2:(06福建卷理科22题)已知数列?an?满足a1?1,an?1?2an?1(n?N*).
(I)求数列?an?的通项公式; (II)若数列?bn?滿足4b1?14b2?1(Ⅲ)证明:
(I)解:
4bn?1?(an?1)bn(n?N*),证明:数列?bn?是等差数列;
an1a1a2n????...?n?(n?N*). 23a2a3an?12an?1?2an?1(n?N*),
?an?1?1?2(an?1),??an?1?是以a1?1?2为首项,2为公比的等比数列
??an?1?2n.即 an?22?1(n?N*). ??4(II)证法一:
(k1?k2?...?kn)?n4k1?14k2?1...4kn?1?(an?1)kn.
?2nkn.
??2[(b1?b2?...?bn)?n]?nbn, ①
2[(b1?b2?...?bn?bn?1)?(n?1)]?(n?1)bn?1. ②
?②-①,得2(bn?1?1)?(n?1)bn?1?nbn,
?即(n?1)bn?1?nbn?2?0,nbn?2?(n?1)bn?1?2?0. ?③-④,得 nbn?2?2nbn?1?nbn?0,
学高中数学数列放缩专题用放缩法处理数列和不等问题
即 bn?2?2bn?1?bn?0,?bn?2?bn?1?bn?1?bn(n?N*),??bn?是等差数列
?(III)证明:
ak2k?12k?11?k?1??,k?1,2,...,n, ak?12?12(2k?1)22??aa1a2n??...?n?. a2a3an?12
ak2k?11111111?k?1??????.k,k?1,2,...,n, k?1kkak?12?122(2?1)23.2?2?2232aa1a2n1111n11n1??...?n??(?2?...?n)??(1?n)??, a2a3an?12322223223an1aan???1?2?...?n?(n?N*). 23a2a3an?12??
2.放缩后为“差比”数列,再求和
例3.已知数列{an}满足:a1?1,an?1?(1?证明:因为an?1?(1?即an?1?an?即an?1?an?令Sn?nn?1.求证: )a(n?1,2,3?)a?a?3?nn?1n2n2n?1n)an,所以an?1与an同号,又因为a1?1?0,所以an?0, n2nan?0,即an?1?an.所以数列{an}为递增数列,所以an?a1?1, n2nn12n?1,累加得:. a?a?a?????nn12222n2n2n?112n?1112n?1?2???n?1,所以Sn?2?3???n,两式相减得: 222222211111n?1n?1n?1Sn??2?3???n?1?n,所以Sn?2?n?1,所以an?3?n?1, 22222222故得an?1?an?3?
3.放缩后成等差数列,再求和
2例4.已知各项均为正数的数列{an}的前n项和为Sn,且an?an?2Sn.
n?1. 2n?1an2?an?12(1) 求证:Sn?;
4
学高中数学数列放缩专题用放缩法处理数列和不等问题
(2) 求证:SnS?1?S1?S2?????Sn?n?1 222?an?2Sn有解:(1)在条件中,令n?1,得a12?a1?2S1?2a1,?a1?0?a1?1 ,又由条件an2an?1?an?1?2Sn?1,上述两式相减,注意到an?1?Sn?1?Sn得
(an?1?an)(an?1?an?1)?0 ?an?0?an?1?an?0 ∴an?1?an?1
所以, an?1?1?(n?1)?n,Sn?n(n?1) 222n(n?1)1n2?(n?1)2an?an?1???所以Sn? 2224(2)因为n?n(n?1)?n?1,所以
n2?n(n?1)n?1,所以 ?22S1?S2??Sn?n2?3n22Sn?1?121?22?3n(n?1)23n?1????????? 22222212?22???n2?n(n?1)22?Sn2
??;S1?S2??Sn?练习:
1.(08南京一模22题)设函数f(x)?123x?bx?,已知不论?,?为何实数,恒有f(cos?)?0且44f(2?sin?)?0.对于正数列?an?,其前n项和Sn?f(an),(n?N*).
(Ⅰ) 求实数b的值;(II)求数列?an?的通项公式; (Ⅲ)若cn?11,n?N?,且数列?cn?的前n项和为Tn,试比较Tn和的大小并证明之. 1?an6解:(Ⅰ) b?1(利用函数值域夹逼性);(II)an?2n?1; 2(Ⅲ)∵cn?
11?11?1?11?1??T?c?c?c?…???+c??,∴n123n????? 2(2n?2)2?2n?12n?3?2?32n?3?62.(04全国)已知数列{an}的前n项和Sn满足:Sn?2an?(?1)n, n?1 (1)写出数列{an}的前三项a1,a2,a3;(2)求数列{an}的通项公式; (3)证明:对任意的整数m?4,有
1117????? a4a5am8分析:⑴由递推公式易求:a1=1,a2=0,a3=2;
学高中数学数列放缩专题用放缩法处理数列和不等问题
⑵由已知得:an?Sn?Sn?1?2an?(?1)n?2an?1?(?1)n?1(n>1) 化简得:an?2an?1?2(?1)n?1
anan?1anan?122???2[?] ??2?2,
(?1)n3(?1)n?13(?1)n(?1)n?1故数列{
an22?}是以为首项, 公比为?2的等比数列. ?a?1(?1)n33故
an212n?2n?1??(?)(?2) ∴a?[2?(?1)n] nn33(?1)3∴数列{an}的通项公式为:an?2n?2[2?(?1)n]. 31],如果我们把上式中的分母中的?1去掉,就可利
2m?2?(?1)m⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边
=
11??a4a5?1311?[2?3?am22?12?1?用等比数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:
1111, ???23232?12?12211111,因此,可将保留,再将后面的项两两组合后放缩,即可求和。这里需要对m???343422?12?1222?1进行分类讨论,(1)当m为偶数(m?4)时,
11111111??????(?)???(?) a4a5ama4a5a6am?1am ?13111?(3?4???m?2) 22222 ?1311??(1?m?4) 2242137?? 288 ?(2)当m是奇数(m?4)时,m?1为偶数,
111111117???????????? a4a5ama4a5a6amam?18所以对任意整数m?4,有
1117?????。 a4a5am8本题的关键是并项后进行适当的放缩。
3.(07武汉市模拟)定义数列如下:a1?2,an?1?an?an?1,n?N?
2
学高中数学数列放缩专题用放缩法处理数列和不等问题
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)