答案以及解析
1答案及解析: 答案:D
解析:①②④可以完全重合,因此D选项符合题意. 故选D.
2答案及解析: 答案:C
解析:由△ABC?△DBE,??BDE??A??BDA ,?E??C ,
?A:?C?5:3 ,??A:?BDA:?BDE:?E?5:5:5:3,
又
?A??BDA??BDE??E?180?,
??C??E?30?,?BDE??A??BDA?50?,?CDE??A??E?50??30??80?,??DBC?180???C??CDE??BDE?180??30??80??50??20?.
3答案及解析: 答案:D
解析:甲三角形只知道一条边长、一个内角度数,无法判断是否与△ABC全等;乙三角形夹
50内角的两边分别与已知三角形对应相等,故乙与△ABC全等;丙三角形72内角及所对
边与对应相等且均有50内角,可根据AAS判定丙与△ABC全等.则与△ABC全等的有乙和丙.
4答案及解析: 答案:B 解析:
在△ABC中,?C?90?,AD是?CAB的平分线,DE?AB于E,?CD?ED.
在Rt△ACD和Rt△AED中,
?AD?AD,?Rt△ACD?Rt△AED(HL),??ADC??ADE.?CD?ED??ADC??ADE??EDB?180?,DE平分?ADB,
??ADC??ADE=?EDB?60?,?B??EDB?90?,??B?30?.
5答案及解析: 答案:B
解析:如图,过点O作MN?AB于M,交CD于N,
AB//CD,?MN?CD,
AB,OE?AC, OE?2,?OM?OE=2, AO是?BAC的平分线,OM? 的平分线,OE?AC,ON?CD,?ON?OE?2, CO是?ACD ?MN?OM?ON?4,即AB与CD之间的距离是4.
6答案及解析: 答案:B
1?AF?DF?14,AF?7,?DF?4 ,AD是△ABC21的角平分线,DF?AB,DE?AC,?DE?DF?4 ,??AC?DE?22 ,?AC?11.
2解析:如图,作DE?AC于E.故选B.
7答案及解析: 答案:C
解析:如图,延长FE交AD的延长线于H.
AD平分?BAE,??BAD??HAE.
FH//AB,??H??BAD,??H??HAE,?EA?EH?EF.
设CF?x,则EF?EA?EH?x?2.
?H??BAD,?HDC??ADB,DC?DB,?△HDC?△ADB(AAS),?AB?CH.故选C.
AB?9,?x?2?2?9,?x?5.
8答案及解析: 答案:90? 解析:
点P到AB,BC,CD的距离都相等,?BP,CP分别是?ABC和?BCD的平分
线,??CBP?.
111?ABC,?BCP??BCD,??CBP??BCP?(?ABC??BCD)2221AB//CD,??ABC??BCD?180?,??CBP??BCP??180??90?,
2??P?180??(?CBP??BCP)?180??90??90?.
9答案及解析: 答案:90° 解析:
CD,BE是边AB和AC上的高,
??ADC??AEB?90°,??ABM??BAC?90°,?BAC??ACN?90°,??ABM??ACN,
在△ABM和△NCA中,
?AB?CN?△ABM?△NCA(SAS),??BAM??CNA,??ABM??ACN,??BM?AC??CNA??ADC??BAN?90°??BAN,?BAM??MAN??BAN,
??MAN?90°.
10答案及解析: 答案:3:4 解析:
AD是?BAC的平分线,?点D到AB,AC的距离相等,
?S△ABD:S△ACD?6:8?3:4 ,
过A作AE?BC于E,?S△ABD?11BD?AE,S△ACD?CD?AE, 22?BD:CD?S△ABD:S△ACD?3:4.
11答案及解析: 答案:①③④
??E??F?解析:在△AEB和△AFC中, ??B??C,?△AEB?△AFC?AAS?,
?AE?AF???EAB??FAC,EB?CF,AB?AC,??EAM??FAN,故③正确;
??E??F?在△AEM和△AFN中,?AE?AF,?△AEM?△AFN?ASA?,
??EAM??FAN??EM?FN,AM?AN,故①正确;
??C??B?AC?AB,?CM?BN,在△CMD和△BND中,??CDM??BDN,
?CM?BN??△CMD?△BND?AAS?,?CD?BD,故②错误;
??CAN??BAM?,?在△ACN和△ABM中,??C??B△ACN?△ABM?AAS?,故④正确.
?AN?AM?故①③④正确.
12答案及解析:
答案:解:在AC上截取CF?AB,连接DF.
?BAC??BDC,且?DEC??AEB,??FCD??ABD.在△DCF和△DBA中,
?CF?AB?△DCF?△DBA(SAS).?DF?DA.??FCD??ABD,??DC?DB?AF?AC?FC?AC?AB,?AC?AB?2AM.?
13答案及解析:
答案:(1)点E在?ABC的平分线上.理由如下: 连接BE,作EH?AB于H,如图.
DM?AC,?AF?2AM.AC?AB2AM??2.
AMAMAE平分?BAD,ED?AD,EH?AB, ?ED?EH.
点E是CD的中点,