好文档 - 专业文书写作范文服务资料分享网站

(完整版)初中数学二次函数专题经典练习题(附答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

二次函数总复习经典练习题

1.抛物线y=-3x+2x-1的图象与坐标轴的交点情况是( ) (A)没有交点. (B)只有一个交点.

(C)有且只有两个交点. (D)有且只有三个交点.

2.已知直线y=x与二次函数y=ax-2x-1图象的一个交点的横坐标为1,则a的值为( ) (A)2. (B)1. (C)3. (D)4.

3.二次函数y=x-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( ) (A)6. (B)4. (C)3. (D)1.

4.函数y=ax+bx+c中,若a>0,b<0,c<0,则这个函数图象与x轴的交点情况是( ) (A)没有交点.

(B)有两个交点,都在x轴的正半轴. (C)有两个交点,都在x轴的负半轴.

(D)一个在x轴的正半轴,另一个在x轴的负半轴.

5.已知(2,5)、(4,5)是抛物线y=ax+bx+c上的两点,则这个抛物线的对称轴方程是( ) (A)x=?2

2

2

2

2

a. (B)x=2. (C)x=4. (D)x=3. b2

6.已知函数y=ax+bx+c的图象如图1所示,那么能正确反映函数y=ax+b图象的只可能是( )

y3yo (A)xo yxo yxyx(D)-4-3-2-1o 1x图1 2

(B)(C)

7.二次函数y=2x-4x+5的最小值是______.

8.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与y=-x形状相同.则这个二次函数的解析式为______.

9.若函数y=-x+4的函数值y>0,则自变量x的取值范围是______.

10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下: 定价(元) 100 110 120 130 140 150 2

2

销量(个) 80 100 110 100 80 60 为获得最大利润,销售商应将该品牌电饭锅定价为 元.

11.函数y=ax-(a-3)x+1的图象与x轴只有一个交点,那么a的值和交点坐标分别为______.

12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽AB?1.6m,涵洞顶点O到水面的距离为2.4m,在图中的直角坐标系内,涵洞所在抛物线的解析式为________.

y2

O1x

图3 13.(本题8分)已知抛物线y=x-2x-2的顶点为A,与y轴的交点为B,求过A、B两点的直线的解析式.

14.(本题8分)抛物线y=ax+2ax+a+2的一部分如图3所示,求该抛物线在y轴左侧与

2

2

2

x轴的交点坐标.

15.(本题8分)如图4,已知抛物线y=ax+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,且点P到x轴的距离为2.(1)求抛物线和直线l的解析式;(2)求点Q的坐标.

16.(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?

17.(本题10分)) 杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月

OQPx2

y图4

到第x个月的维修保养费用累计为y(万元),且y=ax+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数.

(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式; (2)求纯收益g关于x的解析式;

(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?

18(本题10分)如图所示,图4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5∥A1A5,将抛物线放在图4-②所示的直角坐标系中. (1)直接写出图4-②中点B1、B3、B5的坐标; (2)求图4-②中抛物线的函数表达式; (3)求图4-①中支柱A2B2、A4B4的长度.

B2B1A1A2A3A4B3B42

30mB5B3y图4-①

A5B1O图4-② B5x 19、 如图5,已知A(2,2),B(3,0).动点P(m,0)在线段OB上移动,过点P作直线l与

x轴垂直.

(1)设△OAB中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式; (2)试问是否存在点P,使直线l平分△OAB的面积?若有,求出点P的坐标;若无,请说明 理由.

更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:

yAOPBx图5

答案:

一、1.B 2.D 3.C 4.D 5.D 6.B 二、7.3 8.y=-x+3x+4 9.-2<x<2 10.130 11.a=0,(?2

11152,0);a=1,(-1,0);a=9,(,0) 12.y??x 3342

13.抛物线的顶点为(1,-3),点B的坐标为(0,-2).直线AB的解析式为y=-x-2 14.依题意可知抛物线经过点(1,0).于是a+2a+a+2=0,解得a1=-1,a2=-2.当a=-1或a=-2时,求得抛物线与x轴的另一交点坐标均为(-3,0)

15.(1)依题意可知b=0,c=1,且当y=2时,ax+1=2①,-ax+3=2②.由①、②解得a=1,

2

x=1.故抛物线与直线的解析式分别为:y=x2+1,y=-x+3;(2)Q(-2,5)

16.设降价x元时,获得的利润为y元.则依意可得y=(45-x)(100+4x)=-4x+80x+4500,即y=-4(x-10)+4900.故当x=10时,y最大=4900(元)

17.(1)将(1,2)和(2,6)代入y=ax+bx,求得a=b=1.故y=x+x;(2)g=33x-150-y,即g=-x+32x-150;(3)因y=-(x-16)+106,所以设施开放后第16个月,纯收益最大.令

2

2

2

2

2

2

g=0,得-x2+32x-150=0.解得x=16±106,x≈16-10.3=5.7(舍去26.3).当x=5时,g<0, 当x=6时,g>0,故6个月后,能收回投资

30),B5(30,0); 18.(1)B1(?30,0),B3(0, (2)设抛物线的表达式为y?a(x?30)(x?30),

30)代入得y?a(0?30)(0?30)?30. 把B3(0, ∴a??1. 30 ∵所求抛物线的表达式为:y?? (3)∵B4点的横坐标为15, ∴B4的纵坐标y4??1(x?30)(x?30). 30145(15?30)(15?30)?. 302 ∵A3B3?50,拱高为30,

4585?(m). 2285(m). 由对称性知:A2B2?A4B4?2 ∴立柱A4B4?20?四、

19.(1)当0≤m≤2时,S=

1211m;当2<m≤3时,S=×3×2-(3-m)(-2m+6)=-m22223123.∴m?.解得m=3.故存在这样222+6m-6.(2)若有这样的P点,使直线l平分△OAB的面积,很显然0<m<2.由于△OAB的面积等于3,故当l平分△OAB面积时,S=

的P点,使l平分△OAB的面积.且点P的坐标为(3,0).

(完整版)初中数学二次函数专题经典练习题(附答案)

二次函数总复习经典练习题1.抛物线y=-3x+2x-1的图象与坐标轴的交点情况是()(A)没有交点.(B)只有一个交点.(C)有且只有两个交点.(D)有且只有三个交点.2.已知直线y=x与二次函数y=ax-2x-1图象的一个交点的横坐标为1,则a的值为()(A)2.(B)1.(
推荐度:
点击下载文档文档为doc格式
9hrxz51h3o6x2111f20r4n7xz5ee5l00bju
领取福利

微信扫码领取福利

微信扫码分享