好文档 - 专业文书写作范文服务资料分享网站

二次函数的动点问题(含答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

二次函数与四边形

一.二次函数与四边形的形状

例1.(浙江义乌市) 如图,抛物线y?x?2x?3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.

(1)求A、B 两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点,过P点作y轴的平 行线交抛物线于E点,求线段PE长度的最大值;

(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

练习1.(河南省实验区) 23.如图,对称轴为直线x?2A 7的抛物线经过点 2y A(6,0)和 B(0,4). (1)求抛物线解析式及顶点坐标;

(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;

①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?

②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的O 坐标;若不存在,请说明理由.

练习2.(四川省德阳市)25.如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线l1的顶点为C(3,4),抛物线l2与l1关于x轴对称,顶点为C?.

(1)求抛物线l2的函数关系式;

x?7 2B(0,4) F A(6,0) E x (2)已知原点O,定点D(0,4),l2上的点P与l1上的点P?始终关于x轴对称,则当点P运动到何处时,以点D,O,P,P?为顶点的四边形是平行四边形?

(3)在l2上是否存在点M,使△ABM是以AB为斜边且一个角为30的直角三角形?若存,y l2 求出点M的坐标;若不存在,说明理由. 5 E 4 3

2

1 A B 1 2 3 4 5 x ?1 O ?1

?2 ?3

?4 ?5 C? l1 1

练习3.(山西卷)如图,已知抛物线C1与坐标轴的交点依次是A(?4,0),B(?2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于

C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;

(3)当t为何值时,四边形MDNA的面积S有最大值,并求出

此最大值;

(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

二.二次函数与四边形的面积

2

例1.(资阳市)25.如图10,已知抛物线P:y=ax+bx+c(a≠0)

与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下: x y … … -3 5- 2-2 -4 1 5- 22 0 … … (1) 求A、B、C三点的坐标;

(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;

(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.

练习1.(辽宁省十二市第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).

(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);

(2)求出过A,B,C三点的抛物线的表达式;

(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求最小值;若不存在,请说明理由;

(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写的值,并指出相等的邻边;若不存在,说明理由.

出此时m出这个图10

2

练习3.(吉林课改卷)如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,点P沿A?B?C方向以每秒2cm的速度运动,到点CQ同时从点A出发,

停止,点Q沿A?D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋联结,设x秒后橡皮筋扫过的面积为ycm.

(1)当0≤x≤1时,求y与x之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x值;

(3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围;

(4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象.

A A B

2B P

O Q

C

D P

C

O Q D

3

y

2 1 O

1 2 x

练习4.(四川资阳卷)如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、

C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.

(1) 求l2的解析式;

(2) 求证:点D一定在l2上;

(3) □ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值

.

三.二次函数与四边形的动态探究

例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.

(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;

(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;

(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

3

yCEOFBDPAxCyDBEFOPAx图1 图2

例2.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB

(1)求A、B、C三点的坐标; (2)求此抛物线的表达式;

(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过

点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

例3..(湖南省郴州)如图,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线A平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,S?表示矩形NFQC的面积.

(1) S与S?相等吗?请说明理由.

(2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少? (3)如图11,连结BE,当AE为何值时,?ABE是等腰三角形.

AEBDPHADxEPHCNFQMGBMNFC

图10

图11

练习1.如图12, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连结AC交NP于Q,连结MQ.

(1)点 (填M或N)能到达终点;

(2)求△AQM的面积S与运动时间t的函数关系式,并写出自 变量t的取值范围,当t为何值时,S的值最大;

(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标, OMQCyNBQG

P4 Ax图12

若不存在,说明理由.

练习2..(江西省) 25.实验与探究

(1)在图1,2,3中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),写出图1,2,3中的顶点C的坐标,它们分别是(5,2), , ;

y B(1,2) y C D(4,0) B(c,d) y C D(e,0) B(c,d) C

x

O (A) 图1

x

O (A) 图2

x

O A(a,b) D(e,b) 图3

(2)在图4中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);

y B(c,d) C D(e,f)

A(a,b) O 图4

x

归纳与发现

(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为 ;纵坐标b,d,n,f之间的等量关系为 (不必证明);

运用与推广

(4)在同一直角坐标系中有抛物线y?x?(5c?3)x?c和三个点G??2?15??19?c,c?,S?c,c?,?22??22?H(2c,0)(其中c?0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四

边形是平行四边形?并求出所有符合条件的P点坐标.

5

9hn4j3eh4b1xep036okz
领取福利

微信扫码领取福利

微信扫码分享