表述困难的现象。
第二课时三角形面积
教学目标:
1、经历三角形面积计算公式的探索过程,推导出三角形的面积计算公式,掌握求三角形面积的计算方法。
2、通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
3、培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。
教学重点:推导、掌握三角形面积的计算公式。 教学难点:推导三角形面积的计算公式。 教学流程设计: 一、创设情境,引入探索
1、出示红领巾:同学们,今天啊,老师给大家带来一件大家非常熟悉的物品,你们看,是什么?(红领巾)
2、揭题:对,这是与我们朝夕相处的红领巾,它是红旗的一角,同学们想不想知道这条红领巾的面积啊?(想)那就得知道怎样求三角形的面积,今天这节课就我们一起来探究这个问题好吗?(教师板书课题:三
角形面积的计算)
二、自主探索,合作交流
1、回忆平行四边形的推导过程,启发学生运用所学的方法,探究三角形面积计算公式。
师:前面我们学习了长方形、正方形、平行四边形的面积,那么我们回忆一下,在学习平行四边形面积时是用什么方法求出平行四边形面积的?
生回忆叙述。
师:平行四边形的面积公式是什么?
生反馈:平行四边形的面积=底×高(教师板书)
师:那么我们能不能也用转化的方法来探究如何计算三角形面积呢?想一想,你会怎样做一下,怎样用转化的方法来探究三角形的面积。小组里的同学可以互相合作,讨论一下。怎样用转化的方法来探究三角形的面积。
2、学生拿出老师为其准备的实验材料,自行拼图,教师参与到小组中,去引导。
3、小组派代表上实物投影前展示拼的过程,展示时重点引导学生观察、发现三角形与拼成的长方形或平行四边形的关系。选择有代表性的三组,请学生说出拼的过程。
为了使学生能看清每个小组拼的过程,教师再课件演示。 4、归纳概括,推导公式。
让学生试着概括出:三角形的面积=底×高÷2。
教师强调:前面这几组同学都是将两个完全一样的三角形拼成了一个平行四边形,探究出平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,每个三角形的面积等于拼成的平行四边形面积的一半。
因为三角形的面积等于拼成的平行四边形面积的一半,所以,三角形的面积=底×高÷2为什么除以2?
三、实践运用,拓展创新
1、专项练习:教材P84页例2和做一做 学生先独立完成,再反馈校对,说清算理。 2、解决有关生活实际的问题
有两块白布,第一块长135分米、宽9分米,第二块长140分米、宽10分米。用它们做医院包扎使用的三角巾(不可拼接)。
(1)第一块白布可做多少块这样的三角巾?9dm (2)第二块白布可做多少块这样的三角巾?9dm
3、你们还记得课前老师说到的那条红领巾吧,你们想一想,知道它到底多大,该怎么办?根据具体数据计算红领巾的面积。
四、质疑调节,总结延伸。
下图中哪个三角形的面积与画阴影三角形的面积相等,为什么?你能在图中在画一个与画阴影的三角形面积相等的三角形吗?试试看。(图略)
师:通过这节课的探索学习,你有什么收获? 板书设计: 三角形面积 等底等高
三角形的面积=平行四边形的面积÷2 三角形的面积=底×高÷2 S=a×h÷2
课后反思:在平行四边形面积计算公式推导的基础上,学生通过剪、拼两个三角形组成平行四边形,从而推导出三角形面积计算公式,过程比较流畅,掌握也比较扎实。缺点在于推导方法的局限性,学生不能发现一个三角形上下对折剪开后也可以拼成平行四边形,也可以由此推导出三角形的面积计算公式。另外本课中学生对等地等高的体会还不够,须加强。
第三课时梯形面积的计算
教学目标:
1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。
2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。
3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:梯形面积计算公式的推导和运用。 教学难点:理解梯形面积公式的推导过程。 教学过程: 一、导入新课
1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。
3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题)
二、探究新知 第一层次,推导公式