南京信息工程大学2019考研大纲T17数理方程
考研大纲频道为大家提供南京信息工程大学2019考研大纲:T17数理方程,一起来阅读一下吧!更多考研资讯请关注的更新! 科目代码:T17 科目名称:数理方程 一、课程目标
“数理方程”课程是气象学科、大气物理学与大气环境学科、气候系统与全球变化、信息与计算科学以及信号和信息分析与处理等专业的技术基础课。使学生系统地掌握有关偏微分方程的基本理论和求解偏微分方程的各种技巧;考查考生基本知识的运用能力。 二、基本要求
“数理方程”课程的任务是研究偏微分方程的基本概念和基本解法,使学生认识如何典型的物理模型归结为偏微分方程的定解问题,掌握基本分析、求解方法,并对所得结果赋予物理意义。通过本课程的学习,学生能运用数学工具正确分析典型的物理问题,使学生具备进一步学习后续课程的理论基础。 第一章 绪论
1. 理解和掌握偏微分方程的基本概念; 2. 了解三类典型方程的导出;
3. 理解偏微分方程定解问题的提法和适定性问题; 4. 理解和掌握线性定解问题的叠加原理;
5. 理解和掌握二阶线性偏微分方程的分类和化简。
第二章 波动方程的初值问题与行波法
1.理解和掌握无界区域一维波动方程的初值问题解的D’Alembert公式,了解其物理意义;
2.理解和掌握半无界区域一维波动方程的求解方法(延拓法),了解反射波及其形成的原理; 第三章 分离变量法
1.理解和掌握齐次方程和齐次边界条件的定解问题; 2.理解和掌握非齐次方程的定解问题; 3.理解和掌握非齐次边界条件的处理; 第四章 调和方程与格林(Green)函数法 1.理解Laplance方程定解问题的提法; 2.理解和掌握Green公式和应用; 3.理解Green函数的性质;
4.理解和掌握一些特殊区域上的Green函数和Dirichlet问题的解法。
第五章 积分变换法
1.理解傅里叶积分和傅里叶变换,掌握一些基本函数的傅里叶变换;
2.理解和掌握傅里叶变换的性质;
3.理解运用傅里叶变换来求解数理方程定解问题的基本过程;对热传导方程求解过程中所涉及的高斯热核函数给予必要的物理解释。
1、考试目标的能力层次的表述
本课程对各考核点的能力要求一般分为三个层次用相关词语描述:
较低要求——了解;
一般要求——理解、熟悉、会; 较高要求——掌握、应用。
一般来说,对概念、原理、理论知识等,可用“了解”、“理解”、“掌握”等词表述;对计算方法、应用方面,可用“会”、“应用”、“掌握”等词。 2、命题考试的若干规定
(1)本课程的命题考试是根据本大纲规定的考试内容来确定的,根据本大纲规定的各种比例(每种比例规定可有3分以内的浮动幅度,来组配试卷,适当掌握试题的内容、覆盖面、能力层次和难易度)。 (2)各章考题所占分数大致如下: 第一章 20% 第二章 20% 第三章 20% 第四章 20% 第五章 20%
(3)其难易度分为易、较易、较难、难四级,每份试卷中四种难易度,试题分数比例一般为2:3:3:2。