华师大新版八年级(下)中考题单元试卷:第18章 平行四边形
(06)
一、选择题(共4小题) 1.(2013?钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为( )
A.甲<乙<丙 B.乙<丙<甲 C.丙<乙<甲 D.甲=乙=丙 2.(2015?绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )
A.6 B.12 C.20 D.24 3.(2014?梧州)如图,在?ABCD中,对角线AC、BD交于点O,并且∠DAC=60°,∠ADB=15°.点E是AD边上一动点,延长EO交BC于点F.当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是( )
A.平行四边形→矩形→平行四边形→菱形→平行四边形 B.平行四边形→菱形→平行四边形→矩形→平行四边形 C.平行四边形→矩形→平行四边形→正方形→平行四边形 D.平行四边形→矩形→菱形→正方形→平行四边形 4.(2014?南宁)如图,在?ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB=,则DF的长等于( )
A. B. C. D.2
二、填空题(共3小题) 5.(2013?十堰)如图,?ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是 .
6.(2014?宁夏)如图,在四边形ABCD中,AD∥BC,AB=CD=2,BC=5,∠BAD的平分线交BC于点E,且AE∥CD,则四边形ABCD的面积为 .
7.(2014?福州)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是 .
三、解答题(共23小题) 8.(2015?扬州)如图,将?ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.
(1)求证:四边形BCED′是平行四边形;
(2)若BE平分∠ABC,求证:AB2=AE2+BE2.
9.(2015?桂林)如图,在?ABCD中,E、F分别是AB、CD的中点. (1)求证:四边形EBFD为平行四边形;
(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.
10.(2015?柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.
(1)从运动开始,当t取何值时,PQ∥CD?
(2)从运动开始,当t取何值时,△PQC为直角三角形?
11.(2015?毕节市)如图,将?ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.
12.(2015?乌鲁木齐)如图,?ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF. (1)求证:四边形BEDF是平行四边形; (2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.
13.(2015?遂宁)如图,?ABCD中,点E,F在对角线BD上,且BE=DF,求证: (1)AE=CF;
(2)四边形AECF是平行四边形.
14.(2015?宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F. (1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
15.(2013?青海)如图,已知?ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.求证:四边形AECF为平行四边形.
16.(2013?龙岩)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2. (1)求证:AE=CF;
(2)求证:四边形EBFD是平行四边形.
17.(2013?贺州)如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.
(1)求证:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.
18.(2013?南平)如图,在?ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.
19.(2013?玉溪)如图,在?ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.
20.(2013?牡丹江)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.
(1)当点D在边BC上时,如图①,求证:DE+DF=AC.
(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明. (3)若AC=6,DE=4,则DF= .
21.(2013?北京)如图,在?ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长.
22.(2014?徐州)已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF. 求证:四边形BEDF是平行四边形.
23.(2014?长春)如图,在?ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.