19.(本题满分10分)
已知正项数列?an?的前n项和为Sn,且Sn是1与an的等差中项. (1)求数列?an?的通项公式; (2)求数列??2??的前n项和Tn.
?anan?1?19.解析:(1)由等差中项可得2Sn?1?an,即4Sn?(an?1)2,
当n?1时,a1?1;
当n?2时,4Sn?1?(an?1?1)2,又4Sn?(an?1)2,
22由an?Sn?Sn?1得,4an?4Sn?4Sn?1?(an?1)?(an?1?1),(2分)
2222化简得,4an?an?2an?1?an?1?2an?1?1,an?2an?1?an?1?2an?1?1?0,
(an2?2an?1)?(an?12?2an?1?1)?0,即(an?1)2?(an?1?1)2?0,
则(an?an?1)(an?an?1?2)?0,又Qan?0,?an?an?1?2,(4分)
故{an}是以1为首项,2为公差的等差数列,即an?2n?1.
当n?1时,a1?1满足上式.
综上,数列?an?的通项公式是an?2n?1.(6分) (2)Q2211???,(8分) anan?1(2n?1)(2n?1)2n?12n?1111111.(10分) ?Tn?(1?)?(?)?L?(?)?1?3352n?12n?12n?120.(本题满分10分)
2已知函数f(x)?x?2x?alnx (a?R).
(1)当a?1时,求函数f(x)在(1,f(1))处的切线方程; (2)当a?0时,求函数f(x)的单调区间.
20.解析:(1)当a?1时,
1f'(x)?2x?2?,则f(1)??1,f'(1)?1,
x所以切线方程为y?1?x?1.即y?x?2.(3分)
a2x2?2x?a(2)f'(x)?2x?2??(x?0),
xx
6
江苏省2024年高职院校单独招生文化联合测试试卷



