好文档 - 专业文书写作范文服务资料分享网站

(精)最新人教版九年级数学上册知识点总结(史上最全)

天下 分享 时间: 加入收藏 我要投稿 点赞

人教版九年级数学上册知识点总结

21.1 一元二次方程

知识点一 一元二次方程的定义

等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。 注意一下几点:

① 只含有一个未知数;②未知数的最高次数是2;③是整式方程。 知识点二 一元二次方程的一般形式

一般形式:ax2 + bx + c = 0(a ≠ 0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。 知识点三 一元二次方程的根

使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。 21.2 降次——解一元二次方程 21.2.1 配方法

知识点一 直接开平方法解一元二次方程

(1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接

开平方。一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=?a.

(2) 直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可

以利用直接开平方法。

(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方

根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4) 直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数

的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。 知识点二 配方法解一元二次方程

通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。 配方法的一般步骤可以总结为:一移、二除、三配、四开。

(1) 把常数项移到等号的右边; ⑵方程两边都除以二次项系数;

⑶ 方程两边都加上一次项系数一半的平方,把左边配成完全平方式; ⑷ 若等号右边为非负数,直接开平方求出方程的解。 21.2.2 公式法

知识点一 公式法解一元二次方程

(1) 一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个

根为x=

?b?b2a2?4ac,这个公式叫做一元二次方程的求根公式,利用求根公式,

我们可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。

(2) 一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程

ax2+bx+c=0(a≠0)的过程。

(3) 公式法解一元二次方程的具体步骤:

① 方程化为一般形式:ax2+bx+c=0(a≠0),一般a化为正值 ②确定公式中a,b,c的值,注意符号;

③求出b2-4ac的值; ④若b2-4ac≥0,则把a,b,c和b-4ac的值代入公式即可求解,若b2-4ac<0,则方程无实数根。 知识点二 一元二次方程根的判别式

式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△

=b2-4ac.

△>0,方程ax2+bx+c=0(a≠0)有两个不相等的实数根

一元二次方程 △=0,方程ax2+bx+c=0(a≠0)有两个相等的实数根 根的判别式

△<0,方程ax2+bx+c=0(a≠0)无实数根

21.2.3 因式分解法

知识点一 因式分解法解一元二次方程

(1) 把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求

两个求一元一次方程的解,这种解方程的方法叫做因式分解法。 (2) 因式分解法的详细步骤:

① 移项,将所有的项都移到左边,右边化为0;

② 把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式;

③ 令每一个因式分别为零,得到一元一次方程; ④ 解一元一次方程即可得到原方程的解。

知识点二 用合适的方法解一元一次方程 方法名 理论依据 称 适用范围 直接开平平方根的意形如x2=p或(mx+n)2=p(p≥0) 所有一元二次方程 所有一元二次方程 方法 义 配方法 公式法 因式分解法 完全平方公式 配方法 当ab=0,则a=0一边为0,另一边易于分解或b=0 成两个一次因式的积的一元二次方程。

21.2.4 一元二次方程的根与系数的关系

若一元二次方程x2+px+q=0的两个根为x1,x2,则有x1+x2=-p,x1x2=q.

若一元二次方程a2x+bx+c=0(a≠0)有两个实数根x1,x2,则有x1+x2=,?,x1x2= 22.3 实际问题与一元二次方程

知识点一 列一元二次方程解应用题的一般步骤:

(1) 审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间

的等量关系。

(2) 设:是指设元,也就是设出未知数。

(3) 列:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等

含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程。

(4) 解:就是解方程,求出未知数的值。

(5) 验:是指检验方程的解是否保证实际问题有意义,符合题意。 (6) 答:写出答案。

知识点二 列一元二次方程解应用题的几种常见类型 (1) 数字问题

baca三个连续整数:若设中间的一个数为x,则另两个数分别为x-1,x+1。 三个连续偶数(奇数):若中间的一个数为x,则另两个数分别为x-2,x+2。 三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c,则这个三位数是100a+10b+c. (2) 增长率问题

设初始量为a,终止量为b,平均增长率或平均降低率为x,则经过两次的增长或降低后的等量关系为a(1?x)2=b。 (3)利润问题

利润问题常用的相等关系式有:①总利润=总销售价-总成本;②总利润=单位利润×总销售量;③利润=成本×利润率 (4)图形的面积问题

根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。

二次函数知识点归纳及相关典型题

第一部分 基础知识

1.定义:一般地,如果y?ax2?bx?c(a,b,c是常数,a?0),那么y叫做x的二次函数. 2.二次函数y?ax2的性质

(1)抛物线y?ax2的顶点是坐标原点,对称轴是y轴. (2)函数y?ax2的图像与a的符号关系.

①当a?0时?抛物线开口向上?顶点为其最低点;

②当a?0时?抛物线开口向下?顶点为其最高点.

(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y?ax2(a?0). 3.二次函数 y?ax2?bx?c的图像是对称轴平行于(包括重合)y轴的抛物线.

(精)最新人教版九年级数学上册知识点总结(史上最全)

人教版九年级数学上册知识点总结21.1一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。知识点二一元二次方程的一般形式一般形式:ax2+
推荐度:
点击下载文档文档为doc格式
9gbje9dqe34c2db011p1797950lq6e00f7q
领取福利

微信扫码领取福利

微信扫码分享