(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度; (2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若
=
﹣1,求的值.
28.(10分)已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),
与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣函数表达式.
,0),求这条抛物线的
2018年江苏省无锡市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分。在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是( ) A.(
)2=3
B.
=﹣3C.
=3 D.(﹣
)2=﹣3
【分析】根据二次根式的性质把各个二次根式化简,判断即可. 【解答】解:(
)2=3,A正确;
=3,B错误; =(﹣
=3
,C错误;
)2=3,D错误;
故选:A.
【点评】本题考查的是二次根式的化简,掌握二次根式的性质:的关键.
2.(3分)函数y=
中自变量x的取值范围是( )
=|a|是解题
A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤4 【分析】根据分母不等于0列式计算即可得解. 【解答】解:由题意得,4﹣x≠0, 解得x≠4. 故选:B.
【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
3.(3分)下列运算正确的是( ) A.a2+a3=a5 B.(a2)3=a5
C.a4﹣a3=a D.a4÷a3=a
【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.
【解答】解:A、a2、a3不是同类项不能合并,故A错误; B、(a2)3=a6)x5?x5=x10,故B错误; C、a4、a3不是同类项不能合并,故C错误; D、a4÷a3=a,故D正确. 故选:D.
【点评】本题考查合并同类项、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.
4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是( )
A. B. C.
D.
【分析】利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢. 【解答】解:能折叠成正方体的是
故选:C.
【点评】本题主要考查展开图折叠成几何体的知识点,熟练正方体的展开图是解题的关键.
5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有( )
A.1个 B.2个 C.3个 D.4个
【分析】直接利用轴对称图形的性质画出对称轴得出答案. 【解答】解:如图所示:直线l即为各图形的对称轴.
,
故选:D.
【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.
6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=<0<b,则下列结论一定正确的是( ) A.m+n<0 B.m+n>0 C.m<n
D.m>n
的图象上,且a
【分析】根据反比例函数的性质,可得答案. 【解答】解:y=∵a<0,
∴P(a,m)在第二象限, ∴m>0; ∵b>0,
∴Q(b,n)在第四象限, ∴n<0.
的k=﹣2<0,图象位于二四象限,
∴n<0<m, 即m>n, 故D正确; 故选:D.
【点评】本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.
7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表: 售价x(元/
件) 销量y(件)
110
100
80
60
50
90
95
100
105
110
则这5天中,A产品平均每件的售价为( ) A.100元 B.95元
C.98元
D.97.5元
【分析】根据加权平均数列式计算可得.
【解答】解:由表可知,这5天中,A产品平均每件的售价为
=98(元/件),
故选:C.
【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义及其计算公式.
8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是( )