好文档 - 专业文书写作范文服务资料分享网站

【全】人教版初中数学九年级下册知识点总结【新】

天下 分享 时间: 加入收藏 我要投稿 点赞

人教版初三数学九年级下册知识点总结

第二十六章 二次函数................................................ 2

26.1 二次函数及其图像 ......................................... 2 26.2 用函数观点看一元二次方程 ................................. 6 26.3 实际问题与二次函数 ....................................... 6 第二十七章 相似.................................................... 7

27.1 图形的相似 ............................................... 7 27.2 相似三角形 ............................................... 7 27.3 位似 ..................................................... 8 第二十八章 锐角三角函数............................................ 9

28.1 锐角三角函数 ............................................. 9 28.2 解直角三角形 ............................................ 11 第二十九章 投影与视图............................................. 12

29.1 投影 .................................................... 12 29.2 三视图 .................................................. 13

1

第二十六章 二次函数 26.1 二次函数及其图像

二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

一般的,自变量x和因变量y之间存在如下关系: 一般式

y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ; 顶点式

y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式; 交点式

y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;

重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。 牛顿插值公式(已知三点求函数解析式)

y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)

2

求根公式

二次函数表达式的右边通常为二次三项式。 求根公式

x是自变量,y是x的二次函数 x1,x2=[-b±(√(b^2-4ac))]/2a

(即一元二次方程求根公式)(如右图) 求根的方法还有因式分解法和配方法

在平面直角坐标系中作出二次函数y=2x的平方的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。

不同的二次函数图像

如果所画图形准确无误,那么二次函数将是由一般式平移得到的。 注意:草图要有 1本身图像,旁边注明函数。 2画出对称轴,并注明X=什么

3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质轴对称

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 顶点

3

2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2;)/4a ) 当-b/2a=0时,P在y轴上;当Δ= b^2;-4ac=0时,P在x轴上。 开口

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 决定对称轴位置的因素

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号 当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时

(即ab< 0 ),对称轴在y轴右。

事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的

斜率k的值。可通过对二次函数求导得到。 决定抛物线与y轴交点的因素

5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 抛物线与x轴交点个数 6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。 _______

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=

4

-b±√b^2-4ac 的值的相反数,乘上 虚数i,整个式子除以2a)

当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在

{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0) 特殊值的形式 7.特殊值的形式 ①当x=1时 y=a+b+c ②当x=-1时 y=a-b+c ③当x=2时 y=4a+2b+c ④当x=-2时 y=4a-2b+c 二次函数的性质 8.定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a, 正无穷);②[t,正无穷)

奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数 。 周期性:无 解析式:

①y=ax^2+bx+c[一般式] ⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b^2)/4a); ⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

5

【全】人教版初中数学九年级下册知识点总结【新】

人教版初三数学九年级下册知识点总结第二十六章二次函数................................................226.1二次函数及其图像.........................................226.2用函数观点看一元二次方程....................
推荐度:
点击下载文档文档为doc格式
9g5u76268y6o2vt5lzj67d82u9zjlx00ii8
领取福利

微信扫码领取福利

微信扫码分享