chamber 13 from exceeding the sealing ability of the seal member 46, the seal member 46 securely seals the hydraulic oil in the seal chamber 13.
Therefore, it is possible to provide a hydraulic pump which can prevent the hydraulic oil from leaking to the outside.
When the drive shaft 25 drives the hydraulic pump unit 3, the drive shaft 25 is supported by the bearing bush 22. Because a moderate bearing gap is formed between the bearing bush 22 and the drive shaft 25, the drive shaft 25 can incline in the cylindrical bearing bush 22. This embodiment forms a stable lubricating oil film at both end sides of the bearing bush 22 and prevents an inferior lubrication without letting both end sides of the bearing bush 22 firmly contact the drive shaft 25.
That is, because the bearing bush 22 is formed in such a manner that a plurality of bush pieces 23 are positioned at the predetermined interval 1 in the axial direction of the bearing hole 12, a gap (the interval 1) is formed at a substantially center portion of the bearing bush 22. However, the bush pieces 23 are respectively arranged at both end sides of the bearing bush 22. The drive shaft 25 firmly contacts the end sides of the bearing bush 22. The oil groove preventing the lubricating oil film from being formed is not formed at the inner circumference of the bush pieces 23. The oil for lubricating is sufficiently supplied from both end sides of the bearing bush 22 and the bush pieces 23 neighboring with one another to the inner circumference of the bearing bush 22 comprised of each bush piece 23. Therefore, especially at both end sides of the bearing bush 22 the drive shaft 25 firmly contacts, the stable lubricating oil film is formed and the inferior lubrication is prevented.
In this embodiment, at the inner circumference of the bearing bush 22, the oil groove 14 is formed. The oil groove 14 connects the hydraulic pump unit 3 side with the seal chamber 13 and flows the hydraulic oil for lubrication.
That is, the bearing bush 22 is formed by rounding a plate member. At the inner circumference of this bearing bush 22, the oil groove 14 is formed. The oil groove 14 is obliquely formed as one straight line or two oil grooves 14 are formed so as to cross each other at a substantially center position in such a manner that the bearing bush 22 is expanded into a plate shape. Each oil groove 14 is formed in a taper shape so that each sectional area increases gradually from the hydraulic pump unit 3 side to the seal chamber 13 side.
According to this constitution, the leakage oil led into the bearing hole 12 from the hydraulic pump unit 3 is directly supplied from the bearing hole 12 of the hydraulic pump unit 3 side into the inner surface of the bearing bush 22, is led into the seal chamber 13 through the oil groove 14 formed in the inner circumference of the bearing bush 22 and is supplied from the oil groove 14 and the seal chamber 13 side into the inner surface of the bearing bush 22. With this, the drive shaft 25 is smoothly supported.
Therefore, in this embodiment, it is possible to provide a hydraulic pump which can prevent the hydraulic oil from leaking to the outside.
Because the oil groove 14 is formed in the inner surface of the bearing bush 22, it is possible to decrease the manufacturing man-hour of the bearing hole 12.
The above-mentioned description is an explanation of the embodiments of the present invention with reference to the drawings. The present invention is not limited to these embodiments. The present invention can change without departing from the spirit of the present invention. For example, the oil groove 14 formed inside the bearing hole 12 is formed in a substantially straight line in the axial direction of the bearing hole 12, but can be spiral or can be multiple threads.
The bush 22 can comprise more than three bush pieces. In this case, each of bush pieces can be positioned at an equal or unequal interval.
According to the present invention, it is possible to provide the hydraulic pump which
can prevent the hydraulic oil from leaking to the outside
中文译文
液压泵
摘要:
液压泵构件被装在泵体和泵盖之间。轴承孔穿过整个泵体,并且在泵体上被加工完成。主轴和轴承衬被装在轴承孔里。主轴驱动液压泵并且轴承衬支撑着主轴。在轴承孔的末尾,有一个密封的空间,密封圈就是装在这里的。在轴承孔里加工了一个油槽,它连接了液压泵构件和密封空间,并且提供液压油润滑。密封腔边上的油槽的区域要比液压泵构件旁的油槽区域大。轴承衬由很多个衬套组成,并被装在有一定的轴向间隙的轴承孔里。正文:
下面是用这幅图画来解释这液压泵的工作原理。
在图中,数字1代表由铝合金这样金属材料做成的泵体,数字2代表由
金属材料做成的泵盖。液压泵构件
3装在泵体1和泵盖2里。换句话说,环形凹槽被加工在泵体1和泵盖2之间,液压泵构件3被装在环形凹槽4里。
在这个实例中,液压泵构件
3是叶片泵的零件。液压泵构件
3包括定子
7和转子6。转子6由多个放射状活动的叶片组成。定子和9。由定子7和转子6之间的两个相邻的叶片大,卸油腔逐渐减少。凹槽通道
7两边是配流盘8
5组成了一个密闭容积10。
密闭容积10的大小随着转子6旋转而变化。变化是这样的,吸油腔逐渐变
8a和8b在配流盘8和9 的一边。配流盘8
8a和8b放射状的开着。泵里的液压油
和9的一边正对着卸油腔。凹槽通道
卸载到定子7外围的环形凹槽4里的卸油腔(高压腔)11。在图中没有标出吸油口,它在配流盘9一边正对着吸油腔并且通过配流盘。
轴承孔12在泵体1上并通过泵体1。密闭容积13在轴承孔的末端。在轴承孔12上的油槽14连接着液压泵构件3和密闭容积13。部分油槽14是段圆弧。在密闭容积13边的部分油槽14要比在液压泵构件3边的部分油槽14大些。,这样的油槽14很容易铸模形成。
这实例中的油槽14被轴承孔12中心位置分割开。然而,因为轴承孔的中心位置被放在后面提到的衬套片之间,所以轴承孔接着衬套片之间的间隙。因为油槽
分割开的部分成为了所谓的闭死区,这样在油槽动。因此,这有可能减少了进入密闭容积成锥形形状,以至于液压泵构件小。
根据这种结构,油槽14能让泄漏的油从液压泵构件压油,少量的液压油从泵体
3中的轴承孔12流到密
闭容积13,液压泵构件3中的露油是从转子6和配流盘8和9泄漏出来的液
1与配流盘9的连接出泄漏出来。
出油口16把卸油腔
17
进油口15,出油口16和伺服阀接口17在泵体1上。进油口15把吸油腔的每个压油室10和图上没有表示出来的油箱连接着。的一端是封闭的。
在与配流盘9的结合面上,进油口15被分为两路。在进油口15的末端,有个圆弧形状的吸油口
18。在配流盘9上形成的吸油口18正对着吸油口,
在图中没有表示出来。进油口15连接着密闭容积13并通过低压通道19。低压通道19与轴承孔12平行。
出油口16是弯曲放射状的,并且在连接出正对着配流盘16那有个通道21,它连接着配流盘9上的吸油口20。
数字22代表装在轴承孔12上的轴承衬。轴承衬这些衬套装在有一定轴向间隙的轴承孔
22由多个衬套组成,
22由
12中。在这个实例中,轴承衬
9。在出油口
的每个压油室10和图上没有表示出来的动力方向盘连接着。伺服阀接口
12的中心位置直接连14中就阻碍了液压油的流
14。油槽14不断形
14被轴承孔12中心位置分割开,所以被
13的液压油的流量。
在轴承孔12中心位置不断的形成没有被分开的油槽
3那边的区域变大,而密闭容积边的区域变
两个衬套23组成,衬套装在轴向轴承孔12的间隙1处。衬套23是圆柱形
22里。
23之间的
状。轴承衬22里表面是光滑的,油槽不在轴承衬1/3,这样为了可靠地支撑着轴承衬
数字25代表驱动液压泵构件
轴承衬22中两个衬套23之间的间隙1最好是轴承衬22轴向长度L的
22,在这个实例中,两个衬套
间隙1是轴承衬22轴向长度L的1/5。
3的主轴。主轴25装在轴承孔12里,这
26。
种方式使的轴承衬22支撑着主轴25,在主轴25末端附近有锯齿状的因此主轴25能够驱动液压泵构件
锯齿状26通过配流盘9上的通孔9b,并且装配在转子6中的锯齿孔27里。
3上的转子6。主轴25的末端部分是锥形
17处。伺服阀
的,它和配流盘8上的通孔8b是间隙配合。
控制流量的伺服阀30是很灵敏的,它被装在伺服阀接口
30把伺服阀接口17分为压力腔17a和压力腔17b。由于控制弹簧31的弹力,使得伺服阀30通常偏向压力腔17a那边。控制弹簧31装在压力腔17b中。通常情况下,伺服阀30关闭连接吸油通道15的排油通道33。
在泵体1中有个通道35,它连接着卸油通道方向盘,这些在图上没有表示出来。通道36。卸油通道16中的压力卸到压力腔17b。
数字39表示装在泵盖上的压力控制开关。压力控制开关39由一个固定接触器39a和一个可移动接触器
39b组成。压力控制开关
39能够根据压缩
室11的压力来控制,因为可移动接触器39b正对着连接压缩室11的通道40。压力控制开关39是装在凹槽41里边。凹槽41通过径向通道42和轴向通道43连接到配流盘9上的通孔9b。
泵体1和泵盖2被各自的螺栓固定连接着,在图中没有表示出来。泵体1和泵盖2之间的连接处被密封圈密封着,这样可以阻止压缩室11中的液压油泄漏到外面。
数字45表示装在泵盖2和配流盘8之间的密封圈。密封圈45把压缩室11和配流盘上的通孔8b分隔开。数字46表示密封件。密封件46装在密闭容积13里,密封着主轴25。
根据这种结构,主轴
25通过没在图中表示出来的滑轮来转动,转子
6的旋转,吸油腔15通过吸油口18进
10到压缩室
6
连接着主轴25并被带动。当转子6被带动时,随着转子的容积变大,而卸油腔的容积变小。液压油从吸油通道11。进入压缩室11的液压油是通过卸油通道17a的液压油是通过通道口
16,并把液压油引到动力
35连接着压力腔17b并通过通道
入吸油腔中的增压室10,液压油通过泵并从卸油腔中的增压室
34到压力腔17a。进入压力腔
21,卸油通道16和通道35进入到图中没有表示