第一课时 分数乘整数
教学内容:青岛版六年级数学上册教材第2~5页及《新课堂》相关题目。 教学目标:
1.结合具体情境,理解分数乘以整数的意义及计算的算理;掌握分数乘整数的计算法则并进行适当优化。
2 通过观察、对比、试算等活动,经历分数乘整数的计算方法的探索过程。 3. 运用已有知识和经验主动进行探索性思考,并进行分析和归纳。 4. 在探索计算方法的过程中,培养合作意识、优化意识及良好的逻辑思维能力,体验探索学习的乐趣,获得成功的体验。
教学重点:
理解分数乘以整数的算理及计算方法。 教学难点:
探究分数乘以整数的计算方法及算法的优化。 教学准备: 课件 练习材料 教学过程:
一、创设情境,提出问题。
(1)谈话导入:同学们,学校要举行一次小手艺展示活动,我们班的王明同学也想参加。看,(课件出示信息窗1情境图)他准备制作一个漂亮的风筝,这个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,王明遇到困难了,不知道该用多少材料,咱们都来帮帮他,好吗?
(2)交流信息,提出问题。
师:仔细看图,你了解到哪些信息?根据这些信息,能提出什么数学问题? 学生收集信息思考问题。
预设:因为图中给的信息是“风筝的尾巴是由6根布条做成的,每根布条长
1米”,学生最容易想到的问题是:“做这个风筝的尾巴,一共需要多少米布?” 2二、自主学习,小组探究。 1.探索分数乘整数的意义。
(1)要解决这个问题可以怎样列式?你是怎样想的? 预设
1111111生1:+++++,因为每根尾巴长米,一共有6根尾巴,所以6
22222221111111个相加。师板书:+++++ 2222222生2:我们学习整数乘法时,求几个相同加数的和,可以用乘法计算,所以我想6个
111相加也可以用×6。师板书:×6 222(2)评价小结:这个同学说的真棒,他能通过相同整数连加可以用乘法算式表示,联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。
(3)揭示课题
1质疑:在这个乘法算式中,是什么数?(板书:分数)6呢?(板书:整
2数)这是什么样的算式?(板书课题:分数乘整数)能不能再举出几道这样的题目?
学生举例,老师随机板书。
明确:分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
过渡:了解了分数乘整数的意义,怎样计算分数乘整数呢?这是我们这节课要研究的第二个问题。
2.探索分数乘整数的计算方法。 (1)独立计算,尝试解决。 谈话:尝试计算
1×6,你觉得怎样算好就怎样算,把你的做法写在作业纸2上,不仅要会算,还要把道理说清楚。
(2)小组活动。把你的做法说给组内同学听,相互交流,看有没有不同做法,小组长作好记录,以待汇报。
三、汇报交流,评价质疑。 1.小组汇报,评价质疑。
以小组为单位汇报,要求每小组只介绍一种方法,过程要清晰。同时组织学生养成倾听的好习惯。
(1)小组展示交流。 预设:
1×6=0.5×6=3(米) 211111116②×6=+++++==3(米) 222222221*661③×6= ==3(米)
222①
(2)互相质疑评价。 第一种方法是把
1转化成0.5,再按小数乘法计算,这种计算方法熟悉,但2有些分数化小数过程很麻烦,还有的分数不能化成有限小数。这种方法有一定的局限性。
第二种方法利用了乘法和加法的联系来解决问题,很清晰,但书写过程较麻烦,能简单些就好了。
第三种方法既简单又清晰,但为什么分母2不变,只把分子1和6相乘呢? (3)教师评价:同学们的做法都很好,评价得很到位,问题提得很有价值,如果能把乘法和加法联系起来思考,思路就更加清晰明朗。下面我们把②③两种方法结合起来
课件演示方法③的计算道理。
现在大家明白为什么分母2不变,只把分子1和6相乘了吧。今后在教师时,我们可以把第二步和第三步省略,直接按方法③写就可以了。
2.沟通优化,促进发展。 (1)独立计算
7×9 12(2)组间交流:说说计算的道理。 (3)全班交流:
①请1位学生板演计算过程。 ②说计算道理。 ③质疑:
为什么不用第①和第②种方法计算?(引导体会第①和第②种方法或有局限性,或者麻烦,所以用第③种方法较普遍,适用于任何一道分数乘整数题。)
(4)小结分数乘整数的计算方法。 3.探索计算中的简便方法 (1)独立计算10×(2)独立计算
2,之后请一位同学说计算过程。 1511×36。 18①质疑:怎么这次的做题速度明显落后了,你们遇到什么问题?(使学生产生探究简便方法的心理需求)
②讨论:能不能在原有方法的基础上,想办法使计算再变得简单一些? ③课件出示简便算法:先约分再计算。
13(3)独立计算×21,再次感受简便算法。
49四、抽象概括,总结提升。
同学们,以上我们通过替王明解决做风筝的尾巴需要多少材料的问题,理解了分数乘整数的意义与整数乘法的意义相同,探究了分数乘整数的计算方法,知
道了当分数的分母与整数能约分时,应该先约分再计算。需要注意的是:不是所有的整数与分母都能约分。
五、巩固应用,拓展提高。 1.自主练习1.
仔细看图,看谁填得又快又好。
(1) 学生独立完成。
(2) 全班交流, 随时纠正出现的问题。 2.自主练习2. 出示题目。
学生收集信息,发现问题,弄懂题目意思,找出隐含的条件。 学生列式解答,至少有一步计算过程。
展示交流,集体评议。重点评议是否做到先约分再计算。 3.自主练习7. 学生独立计算。
指名汇报计算结果,并简要说说计算过程。 观察这两组算式,你发现了什么?
引导学生发现:两个数相乘,一个因数不变,积随着另一个因数的变化而变化。
4.对比练习:想一想,再计算。
77 12+ 242477(2)×6 +6
3636(1)12×
看清运算符号,再计算。 完成后,小组交流。 5.自主练习3.