_
【分析】根据平均数、中位数、众数及方差的定义,依次计算各选项即可作出判断.
【解答】解:A、平均数是﹣2,结论正确,故A不符合题意; B、中位数是﹣2,结论正确,故B不符合题意; C、众数是﹣2,结论正确,故C不符合题意; D、方差是9,结论错误,故D符合题意; 故选:D.
【点评】本题考查了平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.
5.(3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )
A.55° B.60° C.65° D.70°
【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.
【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C, ∴AC=A′C,
∴△ACA′是等腰直角三角形,
_
∴∠CA′A=45°,∠CA′B′=20°=∠BAC ∴∠BAA′=180°﹣70°﹣45°=65°, 故选:C.
【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
6.(3分)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是( )
A.x>2 B.x<2 C.x>﹣1 D.x<﹣1
【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.
【解答】解:∵函数y1=﹣2x过点A(m,2), ∴﹣2m=2, 解得:m=﹣1, ∴A(﹣1,2),
∴不等式﹣2x>ax+3的解集为x<﹣1. 故选D.
_
【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.
7.(3分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A.(0,) B.(0,) C.(0,2) D.(0,)
【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论. 【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E, 则此时,△ADE的周长最小, ∵四边形ABOC是矩形, ∴AC∥OB,AC=OB, ∵A的坐标为(﹣4,5), ∴A′(4,5),B(﹣4,0), ∵D是OB的中点, ∴D(﹣2,0),
设直线DA′的解析式为y=kx+b, ∴
,
_
∴,
∴直线DA′的解析式为y=x+, 当x=0时,y=, ∴E(0,), 故选B.
【点评】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.
8.(3分)一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )
A. B. C. D.
_
【分析】根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣结论.
【解答】解:观察函数图象可知:a<0,b>0,c<0, ∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣在y轴负半轴. 故选A.
【点评】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据反比例函数图象和一次函数图象经过的象限,找出a<0、b>0、c<0是解题的关键.
二、填空题(本大题共6小题,每小题3分,满分18分) 9.(3分)分解因式:x3﹣x= x(x+1)(x﹣1) .
【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.
【解答】解:x3﹣x, =x(x2﹣1), =x(x+1)(x﹣1).
故答案为:x(x+1)(x﹣1).
【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.
>0,与y轴的交点
>0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出