第4讲 数列的求和
S2017
1.已知数列{an}的前n项和为Sn,且满足a1=1,an+an+1=2n+1,则=( )
2017
A.1009 B.1008 C.2 D.1
11212312341
2.已知数列{an}:,+,++,+++,…,若bn=,那么数列{bn}前
2334445555anan+1
n项的和为( )
111
A.4?1-n+1? B.4?2-n+1?
????111
C.1- D.-
2n+1n+1
3.已知数列{an}的前n项和Sn=n2-6n,则数列{|an|}的前n项和Tn等于( ) A.6n-n2 B.n2-6n+18 ?6n-n2,1≤n≤3,?6n-n2,1≤n≤3,??C.?2 D.?2 ??n-6n+18,n>3n-6n,n>3??
4.已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=1,a2=2,Sn为数列{an}的前n项和,则S2018=( )
A.3 B.2 C.1 D.0 5.对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,数列{an}的“差数列”的通项公式为an+1-an=2n,则数列{an}的前n项和Sn=( )
A.2 B.2n
+-
C.2n1-2 D.2n1-2
an
6.(多选)已知数列{an}满足a1=1,an+1=(n∈N*),则下列结论正确的有( )
2+3an
?1?
A.?a+3?为等比数列 ?n?
1
B.{an}的通项公式为an=n+1
2-3
C.{an}为递增数列 ?1?+
D.?a?的前n项和Tn=2n2-3n-4 ?n?7.在数列{an}中,a1=1,an+2+(-1)nan=1,记Sn是数列{an}的前n项和,则S60=________.
8.(2017年新课标Ⅱ)等差数列{an}的前n项和为Sn,a3=3,S4=10,则
?Sk?1n1k=________.
9.(2019年新课标Ⅱ)已知{an}是各项均为正数的等比数列,a1=2,a3=2a2+16. (1)求{an}的通项公式;
(2)设bn=log2an,求数列{bn}的前n项和.
+
10.已知数列{an}的前n项和Sn=2n1+n-2. (1)求数列{an}的通项公式;
1111
(2)设bn=log2(an-1),求Tn=+++…+.
b1b2b2b3b3b4bnbn+1
11.(2018年浙江)已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1-bn)an}的前n项和为2n2+n.
(1)求q的值;
(2)求数列{bn}的通项公式.
12.(2018年天津)设{an}是等比数列,公比大于0,其前n项和为Sn(n∈N*),{bn}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.
(1)求{an}和{bn}的通项公式;
(2)设数列{Sn}的前n项和为Tn(n∈N*), ⅰ)求Tn;
+n2n2(Tk?bk?2)bkⅱ)证明:=-2(n∈N*).
n+2k?1(k?1)(k?2)?
第4讲 数列的求和
1.A 解析:S2017=a1+(a2+a3)+(a4+a5)+…+(a2016+a2017) =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2016+1) ?1+2×2016+1?×1009=
2
=2017×1009, S2017∴=1009.故选A. 2017
n?n+1?
1121+2+3+…+nn14
2.A 解析:∵an===,∴bn===4?n-n+1?.
2?n+1n+1anan+1n?n+1??
1
∴Sn=4?1-n+1?.
??
3.C 解析:∵由Sn=n2-6n得{an}是等差数列, 且首项为-5,公差为2.
∴an=-5+(n-1)×2=2n-7. ∴n≤3时,an<0;n>3时,an>0.
2??6n-n,1≤n≤3,
∴Tn=?2
?n-6n+18,n>3.?
4.A 解析:∵an+1=an-an-1,a1=1,a2=2,∴a3=1,a4=-1,a5=-2,a6=-1,a7=1,a8=2,…,故数列{an}是周期为6的周期数列,且每连续6项的和为0.故S2018=336×0+a2017+a2018=a1+a2=3.
5.C 解析:∵an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
2-2n
n-1n-22=2+2+…+2+2+2=+2=2n-2+2=2n,
1-2
+
2-2n1n+1
∴Sn==2-2.
1-2
6.ABD
7.480 解析:∵an+2+(-1)nan=1,
∴a3-a1=1,a5-a3=1,a7-a5=1,…,且a4+a2=1,a6+a4=1,a8+a6=1,…. ∴{a2n-1}为等差数列,且a2n-1=1+(n-1)×1=n,即a1=1,a3=2,a5=3,a7=4,…. ∴S4=a1+a2+a3+a4=1+1+2=4,S8-S4=a5+a6+a7+a8=3+4+1=8, S12-S8=a9+a10+a11+a12=5+6+1=12,…. ∴该数列构成以4为首项,4为公差的等差数列.
15×14
∴S60=4×15+×4=480.
2
2n8. 解析:设等差数列{an}的首项为a1,公差为d, n+1
a+2d=3,???1?a1=1,n?n-1?
依题意有?解得?数列{an}的前n项和为Sn=na1+d=4×32?d=1.?4a+d=10.1?2?
n11?n?n+1?11112?1-+- ,==2k-k+1,则?=2??222Skk?k+1???k?1Sk
11111?2n+-+…+-334nn+1?=n+1. 9.解:(1)设{an}的公比为q,由题设得 2q2=4q+16,即q2-2q-8=0. 解得q=-2(舍去)或q=4.
--
因此{an}的通项公式为an=2×4n1=22n1. (2)由(1)得bn=(2n-1)log22=2n-1,
∴数列{bn}的前n项和为1+3+…+2n-1=n2.
n+1??Sn=2+n-2,
10.解:(1)由?得an=2n+1(n≥2). n
?Sn-1=2+?n-1?-2,?
当n=1时,a1=S1=3, 综上所述,an=2n+1.
(2)由bn=log2(an-1)=log22n=n.
1111Tn=+++…+
b1b2b2b3b3b4bnbn+11111=+++…+ 1×22×33×4n?n+1?
11?11111n
1-?+?-?+?-?+…+?n-=?=?2??23??34??n+1?n+1. 11.解:(1)由a4+2是a3,a5的等差中项,得 a3+a5=2a4+4,
∴a3+a4+a5=3a4+4=28,解得a4=8.
1
q+?=20, 由a3+a5=20,得8??q?∵q>1,∴q=2.
(2)设cn=(bn+1-bn)an,数列{cn}前n项和为Sn.
??S1,n=1,
由cn=?解得cn=4n-1.
?S-S,n≥2.-?nn1
-
由(1)可知an=2n1,
?1?n-1, ∴bn+1-bn=(4n-1)·?2?
?1?n-2,n≥2, 故bn-bn-1=(4n-5)·?2?bn-b1=(bn-bn-1)+(bn-1-bn-2)+…+(b3-b2)+(b2-b1)
1?1?n-2+(4n-9)·?1?n-3+…+7·=(4n-5)·+3. ?2??2?2
1?1?2+…+(4n-5)·?1?n-2,n≥2, 设Tn=3+7·+11·?2??2?2
11?1?2+…+(4n-9)·?1?n-2+(4n-5)·?1?n-1, Tn=3·+7·?2??2??2?2211?1?2+…+4·?1?n-2-(4n-5)·?1?n-1, ∴Tn=3+4·+4·?2??2??2?22
?1?n-2,n≥2, 因此Tn=14-(4n+3)·?2??1?n-2. 又b1=1,∴bn=15-(4n+3)·?2?12.(1)解:设等比数列{an}的公比为q. 由a1=1,a3=a2+2,可得q2-q-2=0.
-
∵q>0,可得q=2,故an=2n1. 设等差数列{bn}的公差为d, 由a4=b3+b5,可得b1+3d=4.
由a5=b4+2b6, 可得3b1+13d=16,
从而b1=1,d=1,故bn=n.
-
∴数列{an}的通项公式为an=2n1,数列{bn}的通项公式为bn=n.
1-2nn
(2)ⅰ)解:由(1),有Sn==2-1,
1-22×?1-2n?+
(2-1)=2-n=故Tn=-n=2n1-n-2.
1-2k?1k?1?nk
?nk
?Tk+bk+2?bk?2k1-k-2+k+2?kk·2k12k22k1
ⅱ)证明:∵===-,
?k+1??k+2??k+1??k+2??k+1??k+2?k+2k+1
++n2n22n1?2n+2?Tk+bk+2?bk?2322??2423??-∴=?3-2?+?4-3?+…+?=-2. n+2n+1??k+1??k+2?n+2??k?1++++
?