.\\
《中国古代数学成就》教案
第1课时:萌芽时期的中国古代数学及十进位值制计数法
教学目标:通过介绍萌芽时期的中国古代数学并重点介绍十进位值制计数法,进一步认识和了解我国古代数学的起源和发展,激发数学学习兴趣和爱国情感。 教学重点:十进位值制计数法 教学过程: 一、 总体概况
中国古代数学成就辉煌,既有系统的理论又有丰硕的成果,直到16世纪许多数学分支在国际上都处于领先地位,是名副其实的数学强国,就如同造纸、火药、指南针、印刷术这四大发明一样,是中华民族对世界文明的一项重大贡献,是值得炎黄子孙珍视的一份骄傲。中国古代数学具有悠久的传统,在古代世界四大文明中(中国与古代埃及、印度、巴比伦并称为四大文明古国),中国数学持续繁荣时期最为长久。可大致将我国古代数学发展分为萌芽时期的中国古代数学、汉唐数学、宋元全盛时期的数学、明清数学四个阶段。
二、 萌芽时期的中国古代数学
一提起萌芽时期的我国古代数学,与数学起源有关的一连串问题就会很自然地首先涌入我们的脑海: 最初的数的概念是什么时候产生的?我们的祖先是什么时候学会使用数字的?几何图形又是什么时候开始被我们祖先有意识地引入生活的?……这些首先引起我们兴趣的问题几乎个个都是头等难答的问题,对于我们炎黄子孙来说,这些难解之迷的魅力也许是永久性的。
黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家──夏朝。其后有商、殷两代(约1500B.C-1027B.C)、及周朝(1027B.C-221B.C)。历史上又称公元前八世纪至秦王朝的建立(221B.C)为春秋战国时期。
据《易.系辞》记载:“上古结绳而治,后世圣人易之以书契”。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,
.\\
共有13个独立符号,记数用合文书写,其中有十进位制的记数法,出现最大的数字为三万。
算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。
用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。
筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理(西方称毕氏定理)的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其他数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
三、 十进位制计数法
十进制是一种便捷的计数方法,而筹算是一种有效的工具,两者均是中国对
世界的重大贡献。在同时代的各古代文明中,只有中国提出了十进制。当古希腊伟大学者阿基米德费尽心机地陈述如何用字母系统表示大数时,中国人已“持筹而算”这些大数,甚至“善计者不用筹策了”。没有看似平常的十进制,便很难顺利表述较大的数字。世界上目前仍有一些处于原始发展阶段的部族,对于十以上的数字只能统称为“多”,恐怕与没有适当的进位方法有关。用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),
.\\
并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。筹算直到十 五世纪元朝年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。
现在全球通用的一、二、三、四、五等所谓“印度—阿拉伯”数字出现很晚。公元六世纪,印度才有“二十”、“三十”等表示十的倍数的数字记号;公元七世纪,印度才有了采用完整十进制的证据。此时,中国与印度的往来早已不是什么难得的事情了。公元十世纪,十进制记数法传入欧洲,为其后近代自然科学的兴起打下了一个重要基础。法国数学家拉普拉斯曾这样评价十进制:“这是一个深远而又重要的思想,它今天看来如此简单,以至于我们忽视了它的真正伟绩。
但恰恰是它的简单性以及对一切计算都提供了极大的方便,才使我们的算术在一切有用的发明中列在首位。而当我们想到它竟逃过了古代最伟大的两位人物阿基米德和阿波罗尼的天才思想的关注时,我们更感到这成就的伟大了。” 先进的计数方法导致了整个数学领域的发展。中国古代数学中的分数、负数、小数概念,解高次方程和线性方程组的方法,内插法,一次同余式组解法等,均与筹算和十进制有关。负数概念就诞生于“持筹而算”的过程中,至晚在战国时,人们已在筹算中以红筹表示正数,黑筹表示负数。筹算法还是后来机械运算法的前身。
在筹算法与十进制完善之际,即春秋战国时,中国古代数学进入了第一个辉煌时期。战国初期《法纪》中关于一个农夫家庭收支的叙述中,已使用了加、减、乘、除运算法。古代历法中回归年,朔望月长度(日数)均不是整数,其中的非整数部分都是用分数来表示的,且历法中已有了分数的计算。在几何方面,勾股定理已被发现,点、线、面、体概念也由墨家提了出来。极限概念渐趋明确。最为重要的是,以《周髀算经》、《墨经》为代表的一批流传千古的数学著作在那时诞生了。
.\\
第2课时:汉唐数学及《九章算术》
教学目标:通过介绍汉唐数学并重点介绍中国古代数学的代表作《九章算术》的历史地位和主要内容,进一步认识和了解我国古代数学的发展和成就,激发数学学习兴趣和爱国情感。 教学重点:《九章算术》的基本内容 教学过程: 一、汉唐数学
秦汉是中国古代数学体系的形成时期。为使不断丰富的数学知识系统化、理论化,数学方面的专著陆续出现。
西汉末年(公元前一世纪)编纂的天文学著作《周髀算经》在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术的先驱。此外,还有较复杂的开方问题和分数运算等。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年(公元一世纪)。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
魏晋时期中国数学在理论上有了较大的发展。其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释。刘徽注释《九章算术》,不仅对原书的方法、公式和定理进行一般的解释和推导,且在论述过程中多有创新,更撰写《海岛算经》,应用重差术解决有关测量的问题。刘徽其中一项重要
.\\
的工作是创立割圆术,为圆周率的研究工作奠定理论基础和提供了科学的算法。
南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。《孙子算经》、《夏侯阳算经》、《张丘建算经》就是这个时期的作品。《孙子算经》给出“物不知数”问题,导致求解一次同余组问题;《张丘建算经》的“百鸡问题”引出三个未知数的不定方程组问题。
祖冲之、祖日桓父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113;(2)得到祖日桓定理(幂势既同,则积不容异)并得到球体积公式;(3)发展了二次与三次方程的解法。
隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是讨论土木工程中计算土方、工程的分工与验收以及仓库和地窖的计算问题。
唐朝在数学教育方面有长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》(包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》),作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。
此外,隋唐时期由于历法需要,创立出二次内插法,为宋元时期的高次内插法奠定了基础。而唐朝后期的计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。
二、《九章算术》
《九章算术》是中国古代的数学专著,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种。魏晋时刘徽为《九章算术》作注时说:“周公制礼而有九数,九数之流则《九章》是矣”,又说“汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补,故校其目则与古或异,而所论多近语也”。根据研究,西汉的张苍、耿寿昌曾经做过增补。最后成书最迟在东汉前期,但是其基本内容在东汉后期已经基本定型。《汉书艺文志》(班固根据刘