7.1与三角形有关的线段 7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。 三角形两边的和大于第三边。 7.1.2三角形的高、中线和角平分线 7.1.3三角形的稳定性
三角形具有稳定性。 7.2与三角形有关的角 7.2.1三角形的内角
三角形的内角和等于180。 7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。 三角形的一个外角等于与它不相邻的两个内角的和。 三角形的一个外角大于与它不相邻的任何一个内角。 7.3多边形及其内角和 7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 n边形的对角线公式:
n(n-3) 2各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2) 多边形的外角和等于360。 7.4课题学习 镶嵌
第八章 二元一次方程组 8.1二元一次方程组
含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解 二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。 8.2消元
由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。
8.3再探实际问题与二元一次方程组
第九章 不等式与不等式组
9.1不等式
9.1.1不等式及其解集
用“<”或“>”号表示大小关系的式子叫做不等式。 使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。 含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。 9.1.2不等式的性质
不等式有以下性质:
不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。 不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。 9.2实际问题与一元一次不等式
解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。
9.3一元一次不等式组
把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可
以直观地表示不等式组的解集。 9.4课题学习 利用不等关系分析比赛
第十章 实数 10.1平方根
如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。 求一个数a的平方根的运算,叫做开平方。 10.2立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。 求一个数的立方根的运算,叫做开立方。 10.3实数
无限不循环小数又叫做无理数。 有理数和无理数统称实数。
一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。
初三数学上册知识点 第一章 实数
★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:
说明:“分类”的原则:1)相称(不重、不漏) 2)有标准
2.非负数:正实数与零的统称。(表为:x≥0) 常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。 3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a<1;D.积为1。 4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1
偶数:2n(n为自然数) 7.绝对值:①定义(两种): 代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、 实数的运算
1. 运算法则(加、减、乘、除、乘方、开方)
2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)
3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。 三、 应用举例(略) 附:典型例题
1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│ =b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。 第二章 代数式
★重点★代数式的有关概念及性质,代数式的运算 ☆内容提要☆ 一、 重要概念 分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。