分式、二次根式的函数,会确定它们的自变量的取值范围和求它们的函数值。 (4)了解函数的三种表示法,会用描点法画出函数的图象。
(5)通过函数的教学,使学生体会事物是互相联系和有规律地变化着的,并向学生渗透数形结合的思想方法。 2.二次函数的图象
二次函数。抛物线的顶点、对称轴和开口方向。 △一元二次方程的图象解法。 具体要求:
(1)理解二次函数和抛物线的有关概念,会用描点法画出二次函数的图象,会用公式(不要求掌握公式推导过程和记忆公式)确定抛物线的顶点和对称轴。 *(2)会用配方法确定抛物线的顶点和对称轴。 △(3)会用图象法求一元二次方程的近似解。
*(4)会用待定系数法由已知图象上三个点的坐标求二次函数的解析式。 相 似 形 1.比例线段
比与比例。比例的基本性质。合比性质。等比性质。两条线段的比。成比例的线段。
平行线分线段成比例。截三角形两边或其延长线的直线平行于第三边的判定。具体要求:
(1)理解比与比例的概念。能够说出比例关系式中比例的内项、外项、第四比例项或比例中项。
(2)掌握比例的基本性质定理、合比性质和等比性质。会用它们进行简单的比例变形。 (3)理解线段的比、成比例线段的概念。会判断线段是否成比例。了解黄金分割。 (4)了解平行线分线段成比例定理及截三角形两边或其延长线的直线平行于第三边的判定定理的证明;会用它们证明线段成比例、线段平行等问题,并会进行有关的计算。会分线段成已知比。 2.相似形
相似三角形。三角形相似的判定。直角三角形相似的判定。相似三角形的性质。 具体要求:
(1)理解相似三角形的概念。
(2)灵活运用两对对应角相等、或一对对应角相等且夹边成比例、或三对边之比相等则两三角形相似的判定定理,以及一对直角边和斜边成比例则两直角三角形相似的判定定理。 (3)理解相似比的概念和相似三角形的对应高的比等于相似比的性质。 (4)会按已知相似比作一个三角形与已知三角形相似。 锐角三角函数(及解直角三角形) 1.锐角三角函数
锐角三角函数。锐角三角函数值。角的三角函数值。具体要求:
(1)了解锐角三角函数的概念,能够正确地应用,,,表示直角三角形中两边的比。
(2)会用科学计算器(尚无条件的学校可使用算表)由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角。
(3)熟记,角的三角函数值,会计算含有特殊角的三角函数式的值,会由一个特殊锐角的三角函数值,求出它对应的角度。 2.解直角三角形
解直角三角形。解直角三角形的应用。 实习作业。 具体要求:
(1)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)会用解直角三角形的有关知识解某些简单的实际问题。
(3)通过与三角形或四边形有关的实习作业,培养学生解决实际问题的能力和用数学的意识。
视图与投影(识图初步)
正投影的视图。 基本几何体的视图。 简单零件图。 具体要求:
(1)了解正投影,视图 主视图、俯视图、左视图的意义。 (2)会画基本几何体的二视图或三视图。
(3)会描绘含有直线和圆弧,圆弧和圆弧连接的轮廓线的简单零件图。