解答行程问题的关键是,首先要确定运动的方向,然后根据速度、时间和路程的关系进行计算。
行程问题的基本数量关系是:
速度×时间=路程 路程÷速度=时间 路程÷时间=速度
行程问题常见的类型是:相遇问题,追及问题(即同向运动问题),相离问题(即相背运动问题)。
(一)相遇问题
两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。 它们的基本关系式如下:
总路程=(甲速+乙速)×相遇时间 相遇时间=总路程÷(甲速+乙速)
另一个速度=甲乙速度和-已知的一个速度 1.求路程
(1)求两地间的距离
例1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。甲乙两地相距多少千米?(适于五年级程度)
解:两辆汽车从同时相对开出到相遇各行4小时。一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。两车行驶路程之和,就是两地距离。
56×4=224(千米)
63×4=252(千米) 224+252=476(千米)
综合算式:
56×4+63×4
=224+252 =476(千米) 答略。
例2 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。5小时后,两列火车相距多少千米?(适于五年级程度)
解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。
480-(40+42)×5
=480-82×5 =480-410 =70(千米)
答:5小时后两列火车相距70千米。
例3 甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。从开始走到第二次相遇,共用了6小时。A、B两地相距多少千米?(适于五年级程度)
解:从开始走到第一次相遇,两人走的路程是一个AB之长;而到第二次相遇,
两人走的路程总共就是3个AB之长(图35-1),这三个AB之长是:
(5+4)×6=54(千米)
所以,A、B两地相距的路程是:
54÷3=18(千米)
答略。
例4 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。两车相遇时,第一列火车比第二列火车多行了20千米。求甲、乙两地间的距离。(适于五年级程度)
解:两车相遇时,两车的路程差是20千米。出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。由此可求出两车相遇的时间,进而求出甲、乙两地间的距离。
(60+55)×[20÷(60-55)]
=115×[20÷5] =460(千米) 答略。
*例5 甲、乙二人同时从A、B两地相向而行,甲每小时走6千米,乙每小时走5千米,两个人在距离中点1.5千米的地方相遇。求A、B两地之间的距离。(适于五年级程度)
解:由题意可知,当二人相遇时,甲比乙多走了1.5×2千米(图35-2),甲比乙每小时多行(6-5)千米。由路程差与速度差,可求出相遇时间,进而求出A、B两地之间的距离。
(6+5)×[1.5×2÷(6-5)]
=11×[1.5×2÷1] =11×3 =33(千米) 答略。
由两车“在离中点2千米处相遇”可知,甲车比乙车少行:
2×2=4(千米)
所以,乙车行的路程是:
甲车行的路程是:
A、B两站间的距离是:
24+20=44(千米)
答略。
同普通客车相遇。甲、乙两城间相距多少千米?(适于六年级程度)
快车从乙城开出,普通客车与快车相对而行。已知普通客车每小时行60千米,快车每小时行80千米,可以求出两车速度之和。又已知两车相遇时间,可
以按“速度之和×相遇时间”,求出两车相对而行的总行程。普通客车已行驶
普通客车与快车速度之和是:
60+80=140(千米/小时)
两车相对而行的总路程是:
140×4=560(千米)
两车所行的总路程占全程的比率是:
甲、乙两城之间相距为:
综合算式:
答略。
2)求各行多少
例1 两地相距37.5千米,甲、乙二人同时从两地出发相向而行,甲每小时走3.5千米,乙每小时走4千米。相遇时甲、乙二人各走了多少千米?(适于五年级程度)
解:到甲、乙二人相遇时所用的时间是:
37.5÷(3.5+4)=5(小时)
甲行的路程是: