好文档 - 专业文书写作范文服务资料分享网站

五年级奥数练习题及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

五年级奥数1至40讲答案

第1讲 平均数(一)

一、知识要点

把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢? 下面的数量关系必须牢记:

平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量×平均数 二、精讲精练

【例题1】 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?

【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=126(个);

(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个) 由(1)(2)两个等式可知:

1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个) 1箱苹果比1箱桃多多少个:42×3-36=18(个) 1箱苹果有多少个:28+18=46(个) 练习1:

1.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。问:甲、丁各得多少分?

2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。求四人的平均体重是多少千克?

3.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。三个小组各植树多少棵?

【答案】1.乙与丙的和:(91×3+89×3-95×2)÷2=175(分) 甲:91×3-175=98(分)丁:89×3-175=92(分)

2.甲的体重:126-40×2=46(千克)乙的体重:120-40×2=40(千克) 四人平均体重:(46+40+40×2)÷4=41.5(千克)

1

- -

五年级奥数1至40讲答案

3.甲乙丙的和:(18+17+19)×2÷2=54(棵)

丙组植树:54-18×2=18(棵)乙组植树:54-17×2=20(棵) 甲组植树:54-19×2=16(棵)

【例题2】 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。求这个班男生有多少人?

【思路导航】女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

练习2:

1.两组学生进行跳绳比赛,平均每人跳152下。甲组有6人,平均每人跳140下,乙组平均每人跳160下。乙组有多少人?

2.有两块棉田,平均每亩产量是92.5千克,已知一块地是5亩,平均每亩产量是101.5千克;另一块田平均每亩产量是85千克。这块田是多少亩?

3.把甲级和乙级糖混在一起,平均每千克卖7元,乙知甲级糖有4千克,平均每千克8元;乙级糖有2千克,平均每千克多少元?

【答案】1.(152-140)×6÷(160-152)=9(人) 2.(101.5-92.5)×5÷(92.5-85)×100=600(亩) 3.7-(8-7)×4÷2=5(元)

【例题3】 某3个数的平均数是2.如果把其中一个数改为4,平均数就变成了3。被改的数原来是多少?

【思路导航】原来三个数的和是2×3=6,后来三个数的和是3×3=9,9比6多出了3.是因为把那个数改成了4。因此,原来的数应该是4-3=1。

练习3:

1.已知九个数的平均数是72.去掉一个数之后,余下的数的平均数是78。去掉的数是多少?

2.有五个数,平均数是9。如果把其中的一个数改为1.那么这五个数的平均数为8。这个改动的数原来是多少?

3.甲、乙、丙、丁四位同学,在一次考试中四人的平均分是90分。可是,甲在抄分数时,把自己的分错抄成了87分,因此,算得四人的平均分是88分。求甲在这次考试中

2

- -

五年级奥数1至40讲答案

得了多少分?

【答案】1.72×9-78×8=24 2.9×5-8×5+1=6

3.87+(90×4-88×4)=95(分)

【例题4】 五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?

【思路导航】98分比89分多9分。多算9分就能使全班平均每人的成绩上升91.7-91.5=0.2(分)。9里面包含有几个0.2.五一班就有几名同学。

练习4:

1.五(1)班有40人,期中数学考试,有2名同学去参加体育比赛而缺考,全班平均分为92分。缺考的两位同学补考均为100分,这次五(1)班同学期中考试的平均分是多少分?

2.某班的一次测验,平均成绩是91.3分。复查时发现把张静的89分误看作97分计算,经重新计算,该班平均成绩是91.1分。问全班有多少同学?

3.五个数的平均数是18,把其中一个数改为6后,这五个数的平均数是16。这个改动的数原来是多少?

【答案】1.[92×(40-2)+100×2]÷40=92.4(分) 2.(97-89)÷(91.3-91.1)=40(个) 3.18×5-16×5+6=16

【例题5】 把五个数从小到大排列,其平均数是38。前三个数的平均数是27,后三个数的平均数是48。中间一个数是多少?

【思路导航】先求出五个数的和:38×5=190,再求出前三个数的和:27×3=81.后三个数的和:48×3=144。用前三个数的和加上后三个数的和,这样,中间的那个数就算了两次,必然比190多,而多出的部分就是所求的中间的一个数。

练习5:

1.甲、乙、丙三人的平均年龄为22岁,如果甲、乙的平均年龄是18岁,乙、丙的平均年龄是25岁,那么乙的年龄是多少岁?

2.十名参赛者的平均分是82分,前6人的平均分是83分,后6人的平均分是80分。

3

- -

五年级奥数1至40讲答案

那么第5人和第6人的平均分是多少分?

3.下图中的○内有五个数A、B、C、D、E,□内的数表示与它相连的所有○中的平均数。求C是多少?

【答案】1.18×2+25×2-22×3=20(岁) 2.[(83×6+80×6)-82×10]÷2=79(分) 3.3×3+10×3-7×5=4

第2讲 平均数

二、精讲精练

【例题1】 小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?

【思路导航】100分比86分多14分,这14分必须填补到前几次的平均分84分中去,使其平均分成为86分。每次填补86-84=2(分),14里面有7个2.所以,前面已经测验了7次,这是第8次测验。

练习1:

1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?

2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?

3.两组同学进行跳绳比赛,平均每人跳152次。甲组有6人,平均每人跳140次,如果乙组平均每人跳160次,那么,乙组有多少人?

【答案】1.(21-7)÷(7-5)=7(个) 2.(100-95)÷(95-94)+1=6(门) 3.乙组有9人

【例题2】 小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是

4

- -

五年级奥数1至40讲答案

89分,政治、数学两科平均91.5分,政治、英语两科平均86分,英语比语文多10分。小亮的各科成绩是多少分?

【思路导航】因为语文、英语两科平均分84分,即语文+英语=168分,而英语比语文多10分,即英语-语文=10分,所以,语文是(168-10)÷2=79分,英语是79+10=89分。又因为政治、英语两科平均86分,所以政治是86×2-89=83分;而政治、数学两科平均分91.5分,数学是91.5×2-83=100分;最后根据五科的平均成绩是89分可知,自然分是89×5-(79+89+83+100)=94分。

练习2:

1.甲、乙、丙三个数的平均数是82.甲、乙两数的平均数是86,乙、丙两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?

2.小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。这一次是他第几次测验?

3.五个数排一排,平均数是9。如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数的平均数是多少?

【答案】1.丙:82×3-86×2=74(分)甲:82×3-77×2=92(分)乙:86×2-92=80(分)甲丙平均:(92+74)÷2=83(分)

2.(100-85)÷(85-80)+1=4(次)

3.第五个数:9×5-7×4=17,第一个数:45-10×4=5,平均:(5+17)÷2=11 【例题3】 两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。往返两地的平均速度是每小时多少千米?

【思路导航】用往返的路程除以往返所用的时间就等于往返两地的平均速度。显然,要求往返的平均速度必须先求出逆水行全程时所用的时间。因为360÷10=36(千米)是顺水速度,它是汽艇的静水速度与水流速度的和,所以,此汽艇的静水速度是36-6=30(千米)。而逆水速度=静水速度-水流速度,所以汽艇的逆水速度是30-6=24(千米)。逆水行全程时所用时间是360÷24=15(小时),往返的平均速度是360×2÷(10+15)=28.8(千米)。

练习3:

1.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。求汽船从甲码头顺流行驶几小时到达乙码头?

5

- -

五年级奥数练习题及答案

五年级奥数1至40讲答案第1讲平均数(一)一、知识要点把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数
推荐度:
点击下载文档文档为doc格式
9e46x1euhg6x2111f20r4n7xz5ee5l00bj6
领取福利

微信扫码领取福利

微信扫码分享