好文档 - 专业文书写作范文服务资料分享网站

2020年高中必修一数学上期末模拟试卷(附答案)(1)

天下 分享 时间: 加入收藏 我要投稿 点赞

2020年高中必修一数学上期末模拟试卷(附答案)(1)

一、选择题

1.已知f(x)在R上是奇函数,且f(x?4)?f(x),当x?(0,2)时,f(x)?2x2,则f(7)? A.-2

B.2

C.-98

D.98

x?12.设集合A?x|2?1,B??y|y?log3x,x?A?,则eBA?( )

??A.?0,1? B.?0,1? C.?0,1? D.?0,1?

3.设a?log23,b?3,A.a?b?c

2,则a,b,c的大小关系是( ) 3c?eB.b?a?c C.b?c?a D. a?c?b

4.已知二次函数f?x?的二次项系数为a,且不等式f?x???2x的解集为?1,3?,若方程

f?x??6a?0,有两个相等的根,则实数a?( )

A.-

1 5B.1 C.1或-

1 5D.?1或-

1 5?log1(x?1),x?N*?25.若函数f(x)??,则f(f(0))?( ) x*??3,x?NA.0

B.-1

C.

1 3D.1

6.已知函数f(x)?2x?log2x,g(x)?2?x?log2x,h(x)?2x?log2x?1的零点分别为a,

b,c,则a,b,c的大小关系为( ). A.b?a?c B.c?b?a C.c?a?b

7.函数y?D.a?b?c

lnxx的图象大致是( )

A. B. C. D.

8.若函数y=a?ax (a>0,a≠1)的定义域和值域都是[0,1],则logaA.1

B.2

C.3

548+loga=( ) 65D.4

9.已知函数f?x??log0.5x,则函数f2x?xA.???,1?

B.1,???

?2?的单调减区间为( )

D.?1,2?

?C.?0,1?

10.已知a?log32,b?20.1,c?sin789o,则a,b,c的大小关系是 A.a?b?c

B.a?c?b

C.c?a?b

D.b?c?a

11.函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数且f(2)=0,则使f(x)

<0的x的取值范围( ) A.(-∞,2)

C.(-∞,-2)∪(2,+∞)

B.(2,+∞) D.(-2,2)

D.{1,2,3,4,5}

12.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(eUP)?Q= A.{1}

B.{3,5}

C.{1,2,4,6}

二、填空题

13.已知函数

f(x)?log1x?a,g(x)?x2?2x,对任意的x?[1,2],总存在

124x2?[?1,2],使得f(x1)?g(x2),则实数a的取值范围是______________.

14.已知f?x?为奇函数,且在?0,???上是减函数,若不等式f?ax?1??f?x?2?在

x??1,2?上都成立,则实数a的取值范围是___________.

15.已知函数f?x?满足对任意的x?R都有f??1??x???2??1?f??x??2成立,则 ?2??1??2??7?f???f???...?f??= . ?8??8??8?16.已知常数a?R,函数f?x??x?a.若f?x?的最大值与最小值之差为2,则2x?1a?__________.

?2x,0?x?1,?x17.已知函数f(x)??1则关于x的方程4f(x)?k?0的所有根的和

f(x?1),1?x?3,??2的最大值是_______.

18.已知函数f(x)???x?1,x?0?lnx?1,x?0a8a,若方程f(x)?m(m?R)恰有三个不同的实数解

a、b、c(a?b?c),则(a?b)c的取值范围为______;

19.已知正实数a满足a?(9a),则loga(3a)的值为_____________.

?x?x?5,x?220.已知函数f?x???a?2a?2,x?2,其中a?0且a?1,若f?x?的值域为

??3,???,则实数a的取值范围是______.

三、解答题

21.已知定义在R上的函数f?x?是奇函数,且当x????,0?时,f?x??1?x. 1?x?1?求函数f?x?在R上的解析式;

?2?判断函数f?x?在?0,???上的单调性,并用单调性的定义证明你的结论.

22.已知函数f?x???2log4x?2??log4x?(1)当x?2,4时,求该函数的值域;

??1??. 2???(2)求f?x?在区间?2,t?(t?2)上的最小值g?t?.

23.已知二次函数f?x?满足f?0??2,f?x?1??f?x??2x. (1)求函数f?x?的解析式;

(2)若关于x的不等式f?x??mx?0在?1,2?上有解,求实数m的取值范围; (3)若方程f?x??tx?2t在区间??1,2?内恰有一解,求实数t的取值范围. 24.王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国668个

2的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正3在逐年攀升,有关数据显示,某城市从2016年到2019年产生的包装垃圾量如下表:

城市中有超过年份x 包装垃圾y(万吨) 2016 4 2017 6 2018 9 2019 13.5 x?2016(1)有下列函数模型:①y?a?b;②y?asin?x2016?b;

③y?alg(x?b).(a?0,b?1)试从以上函数模型中,选择模型________(填模型序号),近似反映该城市近几年包装垃圾生产量y(万吨)与年份x的函数关系,并直接写出所选函数模型解析式;

(2)若不加以控制,任由包装垃圾如此增长下去,从哪年开始,该城市的包装垃圾将超过40万吨?(参考数据:lg2?0.3010,lg3?0.4771)

2x?a25.若f?x??x是奇函数.

2?1(1)求a的值;

(2)若对任意x??0,???都有f?x??2m?m,求实数m的取值范围.

226.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入.政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M、养鸡

?a36,1?4a?25,15剟N?a?20.设甲合的收益N与投入a(单位:万元)满足M??2??49,36?a?57,作社的投入为x(单位:万元),两个合作社的总收益为f(x)(单位:万元).

(1)若两个合作社的投入相等,求总收益;

(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?

2020年高中必修一数学上期末模拟试卷(附答案)(1)

2020年高中必修一数学上期末模拟试卷(附答案)(1)一、选择题1.已知f(x)在R上是奇函数,且f(x?4)?f(x),当x?(0,2)时,f(x)?2x2,则f(7)?A.-2B.2C.-98D.98x?12.设集合A?x|2?1,B??y|y?log3x,x?A?,则eBA
推荐度:
点击下载文档文档为doc格式
9dqk971k2z3uh255c6he20sz532alg00cd7
领取福利

微信扫码领取福利

微信扫码分享