好文档 - 专业文书写作范文服务资料分享网站

【精选】人教版七年级下册数学第五章《相交线与平行线》优秀教案

天下 分享 时间: 加入收藏 我要投稿 点赞

人教版七年级下册数学

第五章《相交线与平行线》优秀教案

5.1 相交线 5.1.1 相交线

【教学目标】

1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.

2.理解对顶角相等,并能运用它解决一些问题. 【重难点】 重点

邻补角、对顶角的概念,对顶角的性质与应用. 难点

理解对顶角相等的性质的探索. 【教学设计】

一、创设情境,引入新课 引导语:

我们生活的世界中,蕴涵着大量的相交线和平行线.

本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.

二、尝试活动,探索新知

教师出示一块布片和一把剪刀,表演剪刀剪布的过程.

教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?

学生观察、思考、回答,得出:

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.

1

教师提问:我们可以把剪刀抽象成什么简单的图形?

学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.

教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)

学生根据观察和度量完成下表:

两条直线相交 所形成的角 分类 位置关系 数量关系 教师提问:

如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗? 学生思考回答:

只会改变数量关系而不会改变位置关系. 师生共同定义邻补角、对顶角:

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

2

如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.

教师提问:

你同意下列说法吗?如果错误,如何订正?

1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.

2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角. 3.邻补角是互补的两个角,互补的两个角也是邻补角. 学生思考回答:1、2是对的,3是错的.

第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角. 教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验. 教师把说理过程规范地板书:

在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.

教师板书对顶角的性质: 对顶角相等.

强调对顶角的概念与对顶角的性质不能混淆:

对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

3

【精选】人教版七年级下册数学第五章《相交线与平行线》优秀教案

人教版七年级下册数学第五章《相交线与平行线》优秀教案5.1相交线5.1.1相交线【教学目标】1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.2.理解对顶角相等,并能运用它解决一些问题.【重难点】重点邻补角、对顶角的概念,对顶角的性质与应用.难点
推荐度:
点击下载文档文档为doc格式
9di9t3uvqu6d7jn4l8uv58u602x7bw012lp
领取福利

微信扫码领取福利

微信扫码分享