好文档 - 专业文书写作范文服务资料分享网站

2020版高考数学一轮复习 课时跟踪检测(一)集合(含解析)

天下 分享 时间: 加入收藏 我要投稿 点赞

课时跟踪检测(一) 集合

一、题点全面练

1.已知集合M={x|x+x-2=0},N={0,1},则M∪N=( ) A.{-2,0,1} C.{0}

2

2

B.{1} D.?

解析:选A 集合M={x|x+x-2=0}={x|x=-2或x=1}={-2,1},N={0,1},则

M∪N={-2,0,1}.故选A.

2.设集合A={x|x-x-2<0},集合B={x|-1

2

2

B.(-1,1] D.[1,2)

解析:选B ∵A={x|x-x-2<0}={x|-1

3.设集合M={x|x=2k+1,k∈Z},N={x|x=k+2,k∈Z},则( ) A.M=N C.N?M

B.M?N D.M∩N=?

解析:选B ∵集合M={x|x=2k+1,k∈Z}={奇数},N={x|x=k+2,k∈Z}={整数},∴M?N.故选B.

4.设集合U={1,2,3,4,5},A={2,4},B={1,2,3},则图中阴影部分所表示的集合是( )

A.{4} C.{4,5}

B.{2,4} D.{1,3,4}

解析:选A 图中阴影部分表示在集合A中但不在集合B中的元素构成的集合,故图中阴影部分所表示的集合是A∩(?UB)={4},故选A.

5.(2018·湖北天门等三地3月联考)设集合A={1,2,3},B={4,5},M={x|x=a+b,

a∈A,b∈B},则M中元素的个数为( )

A.3 C.5

B.4 D.6

解析:选B a∈{1,2,3},b∈{4,5},则M={5,6,7,8},即M中元素的个数为4,故选B.

二、专项培优练

(一)易错专练——不丢怨枉分

1.已知集合M={x|y=lg(2-x)},N={y|y=1-x+x-1},则( ) A.M?N C.M=N

B.N?M D.N∈M

解析:选B ∵集合M={x|y=lg(2-x)}=(-∞,2),N={y|y=1-x+x-1}={0},∴N?M.故选B.

2.(2019·皖南八校联考)已知集合A={(x,y)|x=4y},B={(x,y)|y=x},则A∩B的真子集个数为( )

A.1 C.5

??x=4y,

解析:选B 由?

?y=x?

2

2

B.3 D.7

2

??x=0,

得?

?y=0?

??x=4,

或?

?y=4,?

即A∩B={(0,0),(4,4)}, ∴A∩B的真子集个数为2-1=3.

3.已知集合P={y|y-y-2>0},Q={x|x+ax+b≤0}.若P∪Q=R,且P∩Q=(2,3],则a+b=( )

A.-5 C.-1

2

2

2

B.5 D.1

解析:选A 因为P={y|y-y-2>0}={y|y>2或y<-1}.由P∪Q=R及P∩Q=(2,3],得Q=[-1,3],所以-a=-1+3,b=-1×3,即a=-2,b=-3,a+b=-5,故选A.

??????kππkππ

???4.已知集合M=x?x=+,k∈Z,集合N=x?x=-,k∈Z?,则( )

4484??????

A.M∩N=? C.N?M 解析:选

B

B.M?N D.M∪N=M

?由题意可知,M=?x?x=

?

?

?

?2k+4ππ

-,k∈Z?=84?

????2nππ2kππ

?x?x=-,n∈Z?,N=?x?x=-或x=?8484??????2k-1ππ

-,k∈Z?,所以M?N,84?

故选B.

5.(2018·安庆二模)已知集合A={1,3,a},B={1,a-a+1},若B?A,则实数a=( )

A.-1 C.-1或2

2

2

B.2

D.1或-1或2

2

解析:选C 因为B?A,所以必有a-a+1=3或a-a+1=a. ①若a-a+1=3,则a-a-2=0,解得a=-1或a=2.

2

2

当a=-1时,A={1,3,-1},B={1,3},满足条件; 当a=2时,A={1,3,2},B={1,3},满足条件. ②若a-a+1=a,则a-2a+1=0,解得a=1,

此时集合A={1,3,1},不满足集合中元素的互异性,所以a=1应舍去. 综上,a=-1或2.故选C.

6.(2018·合肥二模)已知A=[1,+∞),B=?x∈R

??

?

a≤x≤2a-1?,若A∩B≠?,| 12?

2

2

则实数a的取值范围是( )

A.[1,+∞)

?1?B.?,1?

?2?

D.(1,+∞)

?2?C.?,+∞? ?3?

2a-1≥1,??解析:选A 因为A∩B≠?,所以?1

2a-1≥a,?2?(二)难点专练——适情自主选

?

7.(2018·日照联考)已知集合M=?x?

解得a≥1.

?xy?

?,N=?y| +=1?,则M∩N=| 16+9=1?

43???

x2y2

( )

A.? C.[-3,3]

B.{(4,0),(3,0)} D.[-4,4]

解析:选D 由题意可得M={x|-4≤x≤4},N={y|y∈R},所以M∩N=[-4,4].故选D.

8.(2019·河南八市质检)在实数集R上定义运算*:x*y=x·(1-y).若关于x的不等式x*(x-a)>0的解集是集合{x|-1≤x≤1}的子集,则实数a的取值范围是( )

A.[0,2] C.[0,1)∪(1,2]

B.[-2,-1)∪(-1,0] D.[-2,0]

解析:选D 依题意可得x(1-x+a)>0.因为其解集为{x|-1≤x≤1}的子集,所以当a≠-1时,0<1+a≤1或-1≤1+a<0,即-1<a≤0或-2≤a<-1.当a=-1时,x(1-x+a)>0的解集为空集,符合题意.所以-2≤a≤0.

9.已知集合A={x|3≤3≤27},B={x|log2x>1}. (1)分别求A∩B,(?RB)∪A;

(2)已知集合C={x|1<x<a},若C?A,求实数a的取值范围. 解:(1)∵3≤3≤27,即3≤3≤3, ∴1≤x≤3,∴A={x|1≤x≤3}.

x1

xx3

∵log2x>1,即log2x>log22, ∴x>2,∴B={x|x>2}. ∴A∩B={x|2<x≤3}. ∴?RB={x|x≤2}, ∴(?RB)∪A={x|x≤3}.

(2)由(1)知A={x|1≤x≤3},C?A. 当C为空集时,满足C?A,a≤1; 当C为非空集合时,可得1<a≤3.

综上所述,实数a的取值范围是(-∞,3].

9cz8s5l2in9mzf00wrvr0a0pl1szli00hgz
领取福利

微信扫码领取福利

微信扫码分享