精选
习题三
1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与
出现反面次数之差的绝对值.试写出X和Y的联合分布律. 【解】X和Y的联合分布律如表: Y X 0 0 1 2 3 1 3 C130 1113??? 22281 80 111???3/8 2220 1111??? 22282C3
2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律. 【解】X和Y的联合分布律如表: Y X 0 0 1 0 2 22C3C23 ?4C73521C3C1122C2 ?4C73522C3C23 ?4C7353 1C323C2 ?4C7351C323C2 ?4C7350 1 0 12C163C2C2 ?4C73521C163C2C2 ?4C7352 P(0黑,2红,2白)= 24C22C2/C7?0 1 35
3.设二维随机变量(X,Y)的联合分布函数为
ππ??sinxsiny,0?x?,0?y?F(x,y)=?22
?其他.?0,求二维随机变量(X,Y)在长方形域?0?x?【解】如图P{0?X???πππ?,?y??内的概率. 463?πππ,?Y?}公式(3.2) 463ππππππF(,)?F(,)?F(0,)?F(0,) 434636
.
精选
?sin?ππππππsin?sinsin?sin0sin?sin0sin4346362(3?1).4
题3图
说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度
?Ae?(3x?4y),x?0,y?0,f(x,y)=?
其他.?0,求:(1) 常数A;
(2) 随机变量(X,Y)的分布函数; (3) P{0≤X<1,0≤Y<2}. 【解】(1) 由
??????????f(x,y)dxdy????0???0Ae-(3x?4y)dxdy?A?1 12得 A=12 (2) 由定义,有 F(x,y)???yx????f(u,v)dudv
yy?(3u?4v)?dudv?(1?e?3x)(1?e?4y)??0?012e ????0,???0,y?0,x?0, 其他(3) P{0?X?1,0?Y?2}
?P{0?X?1,0?Y?2}
??100?212e?(3x?4y)dxdy?(1?e?3)(1?e?8)?0.9499.
5.设随机变量(X,Y)的概率密度为
f(x,y)=?(1) 确定常数k;
(2) 求P{X<1,Y<3}; (3) 求P{X<1.5}; (4) 求P{X+Y≤4}. 【解】(1) 由性质有
?k(6?x?y),0?x?2,2?y?4,
其他.?0,.
精选
??????????f(x,y)dxdy??
20?42k(6?x?y)dydx?8k?1,
故 R?
18
(2) P{X?1,Y?3}? ?(3) P{X?1.5}???1313????f(x,y)dydx
x?1.5??13 k(6?x?y)dydx??0?288f(x,y)dxdy如图a??f(x,y)dxdy
D1 ??1.50dx?(4) P{X?Y?4}? ?X?Y?4??2127(6?x?y)dy?. 2832f(x,y)dxdy如图b??f(x,y)dxdy
4D2?0dx?4?x212(6?x?y)dy?. 83题5图
6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为
?5e?5y,y?0,fY(y)=?
0,其他.?求:(1) X与Y的联合分布密度;(2) P{Y≤X}.
题6图
【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为
?1?,0?x?0.2, fX(x)??0.2?其他.?0,而
.
精选
?5e?5y,y?0, fY(y)??其他.?0,所以
f(x,y)X,Y独立fX(x)fY(y)
?1?5y?25e?5y,0?x?0.2且y?0,??5e ??0.2 ??其他.?0,?0,?(2) P(Y?X)?y?x??f(x,y)dxdy如图??25e?5ydxdy
Dx-5y0.200
??dx?25edy??(?5e?5x?5)dx00.2
=e?0.3679.7.设二维随机变量(X,Y)的联合分布函数为
-1?(1?e?4x)(1?e?2y),x?0,y?0,F(x,y)=?
其他.?0,求(X,Y)的联合分布密度.
?2F(x,y)?8e?(4x?2y),x?0,y?0,【解】f(x,y)? ???x?y其他.?0,8.设二维随机变量(X,Y)的概率密度为
f(x,y)=?求边缘概率密度. 【解】fX(x)??4.8y(2?x),0?x?1,0?y?x,
0,其他.??????f(x,y)dy
x2???04.8y(2?x)dy?2.4x(2?x),0?x?1, =? ??其他.?0,??0, fY(y)??????f(x,y)dx
?14.8y(2?x)dx?2.4y(3?4y?y2),0?y?1,??? =??y其他.?0,??0,.
精选
题8图 题9图
9.设二维随机变量(X,Y)的概率密度为
?e?y,0?x?y,f(x,y)=?
其他.?0,求边缘概率密度. 【解】fX(x)??????f(x,y)dy
???y?x???xedy?e,x?0, =? ??其他.?0,??0,fY(y)??????f(x,y)dx
y?y?x???0edx?ye,y?0, =? ??其他.?0,??0, 题10图
10.设二维随机变量(X,Y)的概率密度为
?cx2y,x2?y?1,f(x,y)=?
其他.?0,(1) 试确定常数c;
(2) 求边缘概率密度. 【解】(1)
??????????f(x,y)dxdy如图??f(x,y)dxdy
D =得
?1-1dx?2cx2ydy?x14c?1. 21c?21. 4(2) fX(x)??????f(x,y)dy.