½ËÕÊ¡ÎÞÎýÊÐÌìÒ»ÖÐѧ
Ò»¡¢Ìî¿ÕÌ⣺±¾´óÌâ¹²
1£®É輯ºÏ¡ø
2
2018½ì¸ßÈý4ÔÂÔÂ
14СÌ⣬ÿСÌâx
12
0},B
5·Ö£¬¹²¼Æ70·Ö£®{x2
x
0}£¬Ôò
m
¡ø
A
{xx
£®2£®Èç¹û¸´Êý
(m
2
2
i)(1mi)ÊÇʵÊý£¬ÔòʵÊý
1
3£®ÈôÃüÌâ¡°¡ø
£®
xR£¬Ê¹µÃx
(a1)x
a
0¡±Îª¼ÙÃüÌ⣬ÔòʵÊý
2,c
4£®Ä³Ëã·¨µÄ³ÌÐò¿òͼÈçͼ£¬ÈôÊäÈë¡ø
£®
4,b6£¬ÔòÊä³öµÄ½á
5£®°ÑÒ»¸ù¾ùÔÈľ°ôËæ»úµØ°´ÈÎÒâµã²ð³ÉÁ½¶Î£¬Ôò¡°ÆäÖÐÒ»¶Î³¤¶È´óÓÚÁíÒ»¶Î³¤¶È2±¶¡±µÄ¸ÅÂÊΪ6£®ÔÚ¡÷ABCÖУ¬½Ç½ÇAµÄ´óСΪ
¡ø
¡ø
£®
a¡¢b¡¢c£¬Èô1
A¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪ£®
tanAtanB
7£®ÒÑÖª|a|=3£¬|b|=4£¬(a+b)(a+3b)=33£¬ÔòaÓëbµÄ¼Ð½ÇΪ8£®ÒÑ֪˫ÇúÏßµÄ×ó×¼ÏßÓëΪ
¡ø
C:x2
a
2
yb
22
1(a0,b
0)µÄÓÒ¶¥µã¡¢ÓÒ½¹µã·Ö±ðΪ
BFµÄÖе㣬ÔòË«ÇúÏß
C
A
xÖáµÄ½»µãΪ
£®
B£¬ÈôAÊÇÏ߶Î
2
9£®ÒÑÖªÊýÁÐk=
¡ø
£®
anµÄÇ°nÏîºÍSn=n¡ª7n,ÇÒÂú×ã
16£¼ak+ak+1£¼22,
10£®ÔÚÀⳤΪ11£®ÇúÏß
1µÄÕý·½Ìå
ABCDA1B1C1D1ÖУ¬ËÄÃæÌå
y
2x
ACB1D1µÄ
yx
3
ax
1µÄÒ»ÌõÇÐÏß·½³ÌΪ
1£¬ÔòʵÊý
f(x)
a=
12£®ÒÑÖªº¯ÊýµÄÈ¡Öµ·¶Î§ÊÇ13£®µ±0f(x)
log2(x1),xx
¡ø
2
0,0.
Èôº¯Êýg(x)
2x,
3
x
£®
m
x1
ʱ£¬|ax2x|1
ºã³ÉÁ¢£¬ÔòʵÊý
aµÄÈ¡Öµ·¶Î§Îª
ADEFËùÔÚµÄƽÃæºÍƽÃæ
£¨1£©ÇóÖ¤£º£¨2£©ÇóÖ¤£º
ABCD´¹Ö±£¬HÊÇBEµÄÖе㣬GÊÇAE
GH//ƽÃæCDE£»BD
ƽÃæ
CDE£®
30cmµÄ°ëÔ²ÐΣ¨C¡¢DÔÚÔ²ÖÜÉÏ¡£µÄÃæ»ý×î´ó£¿²¢Çó×î´óÃæ»ý£»
17£®£¨±¾Ð¡ÌâÂú·ÖÐβÄÁÏ
14·Ö£©Èçͼ£¬Ôڰ뾶Ϊ
A¡¢BÔÚÖ±¾¶ÉÏ£¬µã
ABCD
OΪԲÐÄ
ABCD£¬ÆäÖеã
£¨1£©ÔõÑù½ØÈ¡²ÅÄÜʹ½ØµÃµÄ¾ØÐΣ¨2£©Èô½«Ëù½ØµÃµÄ¾ØÐÎÂÁƤ
ABCD¾í³ÉÒ»¸öÒÔADΪĸÏßµÄÔ²ÖùÐιÞ×Ó
ºÍÆ´½ÓËðºÄ£©£¬Ó¦ÔõÑù½ØÈ¡£¬²ÅÄÜʹ×ö³öµÄÔ²ÖùÐÎÐιÞ×ÓÌå»ý×î´ó£¿²¢Çó×î´óÌå»ý£®
18£®(±¾Ð¡ÌâÂú·Ö£¨1£©ÈôÔ²£¨2£©´ÓÔ²
16·Ö) ÒÑÖªÔ²
C£ºx
2
y
2
2x4y
3
0£»
CµÄÇÐÏßÔÚCÍâÒ»µã
xÖᣬyÖáÉϵĽؾàÏàµÈ£¬Çó´ËÇÐÏß·½³Ì£»
P(x1,y1)ÏòÔ²ÒýÒ»ÌõÇÐÏߣ¬ÇеãΪ
M£¬OΪԵã
ʹ|PM|×îСµÄPµãµÄ×ø±ê£®
19£®(±¾Ð¡ÌâÂú·Ö16·Ö)ÒÑÖªÊýÁÐ
anµÄÊ×Ïîa1
3£¬
an
51a1
3an
1
2an1
£¨1£©ÇóÖ¤£ºÊýÁÐ
1an
1ΪµÈ±ÈÊýÁУ»
(2)
¼ÇSn
1a21£¬an
ÕûÊýn£®
£¨3£©ÊÇ·ñ´æÔÚ»¥²»ÏàµÈµÄÕýÕûÊý
m,s,n£¬Ê¹m,s,n³ÉµÈ²îÊýÁÐÇÒ
±ÈÊýÁУ¬Èç¹û´æÔÚ£¬Çë¸ø³öÖ¤Ã÷£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®20£®(±¾Ð¡ÌâÂú·Ö
16·Ö)ÒÑÖª¶þ´Îº¯Êý
g(x)¶ÔÈÎÒâʵÊýx¶¼Âú×ãg(
½ËÕÊ¡ÎÞÎýÊÐÌìÒ»ÖÐѧ
Ò»¡¢Ìî¿ÕÌ⣺±¾´óÌâ¹²
1£®É輯ºÏ
2
2018½ì¸ßÈý4ÔÂÔÂ
14СÌ⣬ÿСÌâx
22
5·Ö£¬¹²¼Æ70·Ö£®{x2
x
0}£¬Ôò
m
A
{xx
12
0},B
£¨2,3£©£®2£®Èç¹û¸´Êý3£®ÈôÃüÌâ¡°
(mi)(1mi)ÊÇʵÊý£¬ÔòʵÊý
1
£
x
£®
R£¬Ê¹µÃx
(a1)x0¡±Îª¼ÙÃüÌ⣬ÔòʵÊý
(1,3)
4£®Ä³Ëã·¨µÄ³ÌÐò¿òͼÈçͼ£¬ÈôÊäÈë
a4,b2,c6£¬ÔòÊä³öµÄ½á
6
£®
5£®°ÑÒ»¸ù¾ùÔÈľ°ôËæ»úµØ°´ÈÎÒâµã²ð³ÉÁ½¶Î£¬Ôò¡°ÆäÖÐÒ»¶Î³¤¶È´óÓÚÁíÒ»¶Î³¤¶È2±¶¡±µÄ¸ÅÂÊΪ
23
£®
a¡¢b¡¢c£¬Èô1
6£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪ
tanAtanB
½ÇAµÄ´óСΪ
3
2
£®
7£®ÒÑÖª|a|=3£¬|b|=4£¬(a+b)(a+3b)=33£¬ÔòaÓëbµÄ¼Ð½ÇΪ8£®ÒÑ֪˫ÇúÏßµÄ×ó×¼ÏßÓëΪ
xC:2a
yb
22
120
1(a0,b
0)µÄÓÒ¶¥µã¡¢ÓÒ½¹µã·Ö±ðΪ
BFµÄÖе㣬ÔòË«ÇúÏß
C
A
xÖáµÄ½»µãΪ1
£®
B£¬ÈôAÊÇÏ߶Î
2
9£®ÒÑÖªÊýÁÐ10£®ÔÚÀⳤΪ11£®ÇúÏß
anµÄÇ°nÏîºÍSn=n¡ª7n,ÇÒÂú×ã16£¼ak+ak+1£¼22, Ôò
1µÄÕý·½Ìå
2
ABCDA1B1C1D1ÖУ¬ËÄÃæÌå
y
2x
ACB1D1µÄ
yx
3
ax
1µÄÒ»ÌõÇÐÏß·½³ÌΪ
1£¬ÔòʵÊý
f(x)
a=
12£®ÒÑÖªº¯Êý
f(x)
log2(x1),x
2
0,
Èôº¯Êýg(x)m
ÆÚ£»£¨3£©Çó
f(x)ÔÚ[0£¬
ab
2
]Éϵĵ¥µ÷ÔöÇø¼ä£®
½â£º£¨1£©f(x)m(1sin2x)cos2x£¬
¡ßͼÏó¾¹ýµã
¦Ð£¬2£¬4
¦Ð2
¦Ð2
¡àf
¦Ð4
m1sincos
2£¬½âµÃm1£®
£¨2£©µ±
m22
1ʱ£¬f(x)
1sin2xcos2x2sin2x
¦Ð4
1
¡à
T
£¨3£©
x[0,2x
24
],2x
,µÃ
[0,],¡à2x
4
[
4
,
54
]
ÓÉ
4x
2
0
8
]Éϵĵ¥µ÷ÔöÇø¼äΪ
¡¡¡¡¡¡
¡àf(x)ÔÚ[0£¬16£®(±¾Ð¡ÌâÂú·ÖÕý·½ÐÎ
2
[0,
8
].
14·Ö)Èçͼ£¬Æ½ÐÐËıßÐÎ
ADEFËùÔÚµÄƽÃæºÍƽÃæ
ABCDÖУ¬BDCD
ABCD´¹Ö±£¬HÊÇBEµÄÖе㣬G
AE,DFµÄ½»µã.
£¨1£©ÇóÖ¤£º£¨2£©ÇóÖ¤£ºÖ¤Ã÷£º¢Å
GH//ƽÃæCDE£»BD
ƽÃæ
CDE£®
GÊÇAE,DFµÄ½»µã£¬¡àGÊÇAEÖе㣬ÓÖHÊÇBEµÄÖеã
17£®£¨±¾Ð¡ÌâÂú·ÖÐβÄÁÏ
14·Ö£©Èçͼ£¬Ôڰ뾶Ϊ
A¡¢BÔÚÖ±¾¶ÉÏ£¬µã
ABCD
30cmµÄ°ëÔ²ÐΣ¨C¡¢DÔÚÔ²ÖÜÉÏ¡£
OΪԲÐÄ
ABCD£¬ÆäÖеã
£¨1£©ÔõÑù½ØÈ¡²ÅÄÜʹ½ØµÃµÄ¾ØÐΣ¨2£©Èô½«Ëù½ØµÃµÄ¾ØÐÎÂÁƤ
µÄÃæ»ý×î´ó£¿²¢Çó×î´óÃæ»ý£»
ABCD¾í³ÉÒ»¸öÒÔADΪĸÏßµÄÔ²ÖùÐιÞ×Ó
ºÍÆ´½ÓËðºÄ£©£¬Ó¦ÔõÑù½ØÈ¡£¬²ÅÄÜʹ×ö³öµÄÔ²ÖùÐÎÐιÞ×ÓÌå»ý×î´ó£¿²¢Çó×î´óÌå»ý£®
×îÐÂ-½ËÕÊ¡ÎÞÎýÊÐÌìÒ»ÖÐѧ2018½ì¸ßÈý4ÔÂÔ¿¼ÊÔ¾í(Êýѧ)¾«Æ·



